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Golgi‑Localized OsFPN1 is Involved in Co 
and Ni Transport and Their Detoxification in Rice
Manman Kan1, Toru Fujiwara1 and Takehiro Kamiya1,2* 

Abstract 

Cobalt (Co) and nickel (Ni) are beneficial and essential elements for plants, respectively, with the latter required for 
urease activity, which hydrolyzes urea into ammonium in plants. However, excess Co and Ni are toxic to plants and 
their transport mechanisms in rice are unclear. Here, we analyzed an ethyl methanesulfonate (EMS)-mutagenized rice 
mutant, 1187_n, with increased Co and Ni contents in its brown rice and shoots. 1187_n has a mutation in OsFPN1, 
which was correlated with a high Co and Ni phenotype in F2 crosses between the parental line and mutant. In addi-
tion, CRISPR/Cas9 mutants exhibited a phenotype similar to that of 1187_n, demonstrating that OsFPN1 is the causal 
gene of the mutant. In addition to the high Co and Ni in brown rice and shoots, the mutant also exhibited high Co 
and Ni concentrations in the xylem sap, but low concentrations in the roots, suggesting that OsFPN1 is involved in the 
root-to-shoot translocation of Co and Ni. The growth of 1187_n and CRISPR/Cas9 lines were suppressed under high 
Co and Ni condition, indicating OsFPN1 is required for the normal growth under high Co and Ni. An OsFPN1-green 
fluorescent protein (GFP) fusion protein was localized to the Golgi apparatus. Yeast carrying GFP-OsFPN1 increased 
sensitivity to high Co contents and decreased Co and Ni accumulation. These results suggest that OsFPN1 can trans-
port Co and Ni and is vital detoxification in rice.
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Background
Co and Ni are rare elements of the earth’s crust and 
usually compete with Fe when absorbed by organisms 
(Buschow 1971; Salnikow et  al. 2004; Morrissey et  al. 
2009). Co is a beneficial element that improves growth 
in certain plants, particularly leguminous plants (Kar-
lengen et  al. 2013). However, excess Co leads to black 
patches in tomato fruit (Chatterjee and Chatterjee 2005), 
and chlorosis in the young leaves of French bean (Phaseo-
lus vulgaris L.), groundnut mung bean (Vigna radiate), 
and tomato (Lycopersicon esculentum) plants by caus-
ing reduced chlorophyll a, b, and carotene concentra-
tions (Liu et al. 2000; Gopal et al. 2003; Chatterjee et al. 

2006). Ni is an essential micronutrient in plants that is 
present in the active site of urease, an enzyme that hydro-
lyzes urea into ammonium in plant tissues (Eskew et al. 
1983, 1984; Kerby et al. 1997). In addition to urease, Ni 
forms a part of other metalloenzymes, such as super-
oxide dismutase, glyoxalase, and hydrogenase. Similar 
to Co, excess Ni affects plant germination and growth. 
For example, the application of 1.5 mM of Ni decreased 
pigeon pea (Cajanus cajan (L.) Millspaugh) germination 
by approximately 20% (Aggarwal et  al. 1990; Rao and 
Sresty 2000). Additionally, the growth of cabbage (Bras-
sica oleracea L var. capitate) was inhibited by 0.5 mM of 
Ni (Pandey and Sharma 2002).

Ferroportin (FPN), also referred to as iron-regulated 
gene1 (IREG1) or metal transporter protein1, was first 
identified in hypotransferrinemic mice, where it was 
involved in Fe absorption in the duodenum (McKie et al. 
2000) and Fe recycling in macrophages (Muckenthaler 
et  al. 2008). Arabidopsis thaliana contains three 
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homologous genes of mammalian FPN, i.e., AtFPN1, 
AtFPN2, and AtFPN3. AtFPN1 encodes a plasma mem-
brane-localized exporter of Co and Fe, which is expressed 
in the vasculature of the root and shoot and is involved 
in the loading of these elements from the pericycle to the 
xylem. (Morrissey et al. 2009). The expression of AtFPN1 
is not regulated by Fe (Morrissey et  al. 2009), while 
AtFPN2 and AtFPN3 is induced by Fe starvation (Morris-
sey et al. 2009; Kim et al. 2021). AtFPN2 is localized in the 
tonoplast and is expressed in the epidermis and cortex 
of the root (Morrissey et al. 2009). The AtFPN2 mutant 
causes high Co and Ni accumulation in the shoots, but 
low accumulation in the roots, indicating that it seques-
ters Co and Ni into vacuoles in the root for detoxification 
(Schaaf et al. 2006; Morrissey et al. 2009). AtFPN3, which 
has 20% similarity to AtFPN1 and AtFPN2, is localized in 
chloroplasts/mitochondria function as Fe exporter and 
essential for Fe homeostasis (Kim et  al. 2021). In addi-
tion to Fe homeostasis, AtFPN3, also known as MAR1, 
also played a role in controlling the entry of antibiotics 
into chloroplasts (Conte et  al. 2010; Conte and Lloyd 
2010). In the hyperaccumulator Psychotria gabriel-
lae, the expression of PgFPN1 in mRNA expression was 
higher than that in non-accumulator species (Merlot 
et al. 2014). The overexpression of PgFPN1 in Arabidop-
sis enhances its tolerance to high levels of Ni (Merlot 
et al. 2014). In monocotyledons, buckwheat (Fagopyrum 
esculentum Moench) FPN1 (FeFPN1) is involved in inter-
nal Al3+ detoxification (Yokosho et  al. 2016). FeFPN1 is 
expressed in the roots and is greatly upregulated by Al3+, 
but not by Fe, unlike AtFPN2 (Schaaf et al. 2006; Morris-
sey et al. 2009). The overexpression of FeFPN1 in Arabi-
dopsis confers Al tolerance, suggesting that it is involved 
in Al detoxification in buckwheat (Yokosho et al. 2016). 
However, the function of putative FPNs in rice remains 
unclear.

In this study, we conducted ionome screening of an 
ethyl methanesulfonate (EMS)-mutagenized rice M2 pop-
ulation and identified a mutant with high Co and Ni con-
tents in the grain and shoot. The causal gene encoding 
FPN is OsFPN1, which is localized to the Golgi apparatus 
and mediates Co and Ni transport. The mutants exhib-
ited sensitivity to high levels of Co and Ni, indicating that 
OsFPN1 is necessary for tolerance to these elements.

Results
1187_n Exhibited Increased Co and Ni Contents in Brown 
Rice, Shoot, and Xylem Sap
To identify the genes regulating mineral transport in 
rice (O. sativa cv. Hitomebore), ionome screening of the 
EMS-mutagenized M2 population was conducted (Tan-
aka et  al. 2016). We isolated a mutant, 1187_n, which 
exhibited high Co and Ni concentrations in brown rice 

grown in paddy fields during 2013 and 2016 (Additional 
file  1: Fig. S1, Fig.  1A). Additionally, 1187_n exhibited 
high Co and Ni concentrations in shoots when the plants 
were grown in soil (Fig. 1B) or the Kimura B hydroponic 
solution (Ma et al. 2001) (Fig. 1C). Additionally, increased 
Co and Ni concentrations were observed in the xylem sap 
(Kan et al. 2019) of 1187_n grown under hydroponic con-
ditions (Fig. 1D). These results indicated that 1187_n has 
defect in root-to-shoot transport of Co and Ni.

Sensitivity of 1187_n to High Co and Ni
To observe the effects of Co and Ni on the growth of 
1187_n, the plants were grown in Kimura B solution 
supplemented with various concentrations of Co or Ni 
for three weeks. The seedlings were cut at the shoot–
root junction to divide them into shoots and roots, and 
the length and dry weight of the shoots and roots were 
measured. The shoot and root growth of 1187_n were 
more suppressed under applied Co or Ni concentrations 
of 1 and 10 μM compared to the wild type (Fig. 2). These 
results indicate that 1187_n is sensitive to high levels of 
Co and Ni.

OsFPN1 is the Causal Gene of 1187_n
The phenotype of increased Co concentration in the 
shoot and sensitivity to Co and Ni of 1187_n is similar to 
the phenotype of the fpn2 mutant of A. thaliana (Mor-
rissey et al. 2009). Thus, we hypothesized that the FPN2 
homolog in rice was the causal gene of 1187_n. Rice con-
tains only one homolog, Os06g0560000 (hereafter named 
OsFPN1) (Additional file 1: Fig. S2). Sequencing analysis 
of OsFPN1 in 1187_n revealed that 1187_n had a muta-
tion (T to G) in the second exon, which caused Leu181 to 
Gln substitution (Fig. 3A). The OsFPN1 protein was pre-
dicted to be composed of nine transmembrane domains 
(Additional file 1: Fig. S3A). Leu181 was located between 
transmembrane domains 4 and 5, and was highly con-
served among plant and human FPN homologs (Addi-
tional file 1: Fig. S3).

To confirm whether OsFPN1 was the gene responsible 
for the increased Co and Ni in 1187_n, ionome analysis 
of F2 crosses between 1187_n and wild type was con-
ducted in seedlings grown under hydroponic conditions 
(Fig.  3B). The Co and Ni concentrations were positively 
correlated and segregated with a ratio of 56:20 (wild 
type:mutant phenotype), which fits the 3:1 ratio (chi-
squared test, χ2 = 0.853), indicating that increased lev-
els of both Co and Ni were caused by a single recessive 
gene (Fig. 3B). Next, to observe the correlation between 
the ionome phenotype and mutation in OsFPN1, we 
designed a dCAPS marker to detect the mutation, and 
the F2 plants used for ICP-MS analysis underwent gen-
otyping (Fig.  3B). All F2 seedlings with homozygous 
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Fig. 1  Co and Ni accumulation in Hitomebore and 1187_n. A Co and Ni concentrations in the grains of Hitomebore and 1187_n grown in a paddy 
field (n = 3–4). B Co and Ni concentrations in the shoots of Hitomebore and 1187_n cultivated in soil (n = 3–4). C Co and Ni concentrations in the 
shoots of Hitomebore and 1187_n cultivated in a hydroponic culture (n = 11–12). D Co and Ni concentrations in the xylem sap of Hitomebore and 
1187_n cultivated in a hydroponic culture (n = 9–11). Xylem sap was collected for 4 h. For A, B data are the same as those in Figure S1. For B–D 
21-d-old seedlings were harvested for the experiments. Data represents the mean ± SD. Student’s t-test, *p < 0.05; **p < 0.01
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Fig. 2  Growth phenotype of Hitomebore and 1187_n under various Co and Ni conditions. Shoot (left panel) and root (right panel) lengths (A, 
B) and dry weight (C, D) under various Co (A) and Ni (B) conditions. Plants were grown in hydroponic culture for three weeks. Data represent the 
means ± SD (n = 8–11). Student’s t-test, *p < 0.05; **p < 0.01
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Fig. 3  Responsibility of OsFPN1 for the phenotype of 1187_n. A Exon intron structure of OsFPN1. Gray boxes, dark boxes, and lines represent 
the untranslated region, exon, and intron, respectively. OsFPN1 of 1187_n has a nonsynonymous mutation of T to G [leucine (L) is replaced with 
glutamine (G)]. Osfpn1-2 and osfpn1-3 are CRISPR/Cas 9 mutants with 1 bp and 26 bp deletions at the first exon of OsFPN1, respectively. WT 
(Nipponbare) is the background of the mutants. B Scatterplot based on the Co and Ni concentrations in the shoots of three-week-old seedlings of 
Hitomebore, 1187_n, and F2. F2_Wild, F2_Hetero, and F2_Mutant represent the wild-type, heterozygous, and mutant homozygous genotypes of F2, 
respectively. C Co and Ni concentrations in the shoots of Hitomebore, osfpn1-1, Nipponbare, osfpn1-2, and osfpn1-3. Plants were grown in Kimura 
B solution supplied with 10 trace elements. Data represent the means ± SD (n = 3–12). Student’s t-test (compared to Hitomebore or Nipponbare). 
**p < 0.01
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mutations exhibited increased Co and Ni contents, while 
the wild-type homozygous and heterozygous F2 seedlings 
exhibited low Ni and Co contents (Fig. 3B). These results 
indicate the co-segregation between the Co and Ni con-
centrations and the genotype, suggesting that OsFPN1 is 
the causal gene of 1187_n. Hereafter, we refer to1187_n 
as osfpn1-1.

To demonstrate that OsFPN1 is the causal gene, two 
independent CRISPR/Cas9 lines, osfpn1-2 and osfpn1-3, 
were generated in Nipponbare as it was difficult to trans-
form Hitomebore. osfpn1-2 and osfpn1-3 have 1 bp and 
26 bp deletions, respectively. First, we conducted ionome 
analysis in seedlings, and found that osfpn1-1, osfpn1-
2, and osfpn1-3 exhibited higher Co and Ni contents in 
their shoots than the wild-type plants (Fig.  3C). Taken 
together with the correlation between the phenotype and 
genotype (Fig. 3B), these data demonstrate that OsFPN1 
is the causal gene of 1187_n.

According to the RiceXPro database (https://​ricex​pro.​
dna.​affrc.​go.​jp/) (Sato et  al. 2011), OsFPN1 is expressed 
in whole tissues, especially high in root and reproductive 
organs.

Osfpn1 Mutants Were Sensitive to High Co and Ni
To investigate whether the sensitivity of osfpn1-1 
(1187_n) is also caused by the mutation in OsFPN1, we 
tested the tolerance of osfpn1-1 and osfpn1-2, together 
with their wild type, to Co and Ni (Fig. 4). Without Co or 
Ni, the shoot and root growth of osfpn1-1 and osfpn1-2 
were similar to that of the wild type. Under 10  μM Ni, 
the shoot and root growth of osfpn1-1 and osfpn1-2 were 
inhibited. These results indicated that OsFPN1 is impor-
tant for high Co and Ni tolerance.

OsFPN1 is Localized to the Golgi Apparatus
OsFPN1 is a membrane protein with nine putative 
transmembrane domains (Additional file  1: Fig. S2). 
To determine the subcellular localization of OsFPN1, 
OsFPN1-GFP or GFP-OsFPN1 were driven by the CaMV 
35S RNA promoter and transiently expressed in proto-
plasts prepared from rice leaf sheaths. In the protoplast 
expressing OsFPN1, a dot-like structure was observed 
in both the N- and C-terminal fusion proteins. The dot-
like structure was co-localized with the Golgi marker 
OsCTL1 (Wu et  al. 2012) (Fig.  5). Therefore, OsFPN1-
GFP was localized to the Golgi apparatus.

OsFPN1 can Transport Co and Ni in Yeast
To test whether OsFPN1 can transport Co and Ni, GFP-
OsFPN1 was expressed in Co-and Ni-sensitive yeast 
cot1 mutants (Schaaf et  al. 2006; Morrissey et  al. 2009). 
COT1p is a Zn and Co transporter localized in vacuoles, 
and cot1 mutants are sensitive to high Co concentrations 

(Conklin et al. 1992). In the following experiments, COT1 
was used as a positive control and GFP-fused COT1 
(GFP-COT1) was introduced into the yeast. GFP fluores-
cence was observed in the yeast transfected with GFP-
COT1 and GFP-OsFPN1, suggesting that the genes were 
translated (Fig.  5A). Based on the pattern of GFP, GFP-
COT1 could be localized to the vacuole, which is consist-
ent with a previous report (Morrissey et  al. 2009), and 
GFP-OsFPN1 was observed in the dot-like structure and 
cell periphery (Fig. 6A).

To determine the Co tolerance of cot1 carrying each 
construct, the yeasts were spotted onto SD-uracil free 
media containing a high (1 mM) Co concentration. Con-
sistent with a previous report (Morrissey et  al. 2009), 
COT1-GFP conferred tolerance to 1 mM of Co (Fig. 6B). 
However, the expression of OsFPN1-GFP increased Co 
sensitivity when compared to the empty vector (Fig. 6B). 
We also determined the Co concentrations of yeast car-
rying GFP-OsFPN1 after incubation in liquid media. The 
yeast carrying GFP-OsFPN1 exhibited a lower Co con-
centration than that carrying the empty vector, while it 
was higher in the yeast carrying GFP-COT1 (Fig.  6C). 
These results suggest that OsFPN1 can transport Co in 
yeast. We also determined the Ni concentration in the 
yeasts after incubation with SD-uracil free media con-
taining Ni, and the yeast carrying GFP-OsFPN1 exhibited 
a lower Ni content than that carrying the empty vector 
(Fig. 6C), suggesting that OsFPN1 can transport both Ni 
and Co in yeast.

OsFPN1 is Involved in Co and Ni Translocation, Particularly 
Under Low‑Fe Conditions
In Arabidopsis, two genes are involved in Co and Ni 
transport: AtFPN1 and AtFPN2 (Morrissey et  al. 2009). 
The mRNA expression of FPN2 is upregulated by low lev-
els of Fe (Morrissey et al. 2009), whereas that of AtFPN1 
is not (Morrissey et al. 2009). AtFPN2 can sequester Co 
and Ni into vacuoles in roots, while AtFPN1 can export 
Co to the shoot. To confirm whether OsFPN1 mRNA is 
regulated by Fe, Co, and Ni, rice was grown under 0, 9, 
and 90 μM of Fe, or 0 and 50 μM of Co or Ni in Kimura B 
solution and the OsFPN1 mRNA levels were quantified. 
Unlike AtFPN2, the mRNA expression of OsFPN1 was 
not altered by Fe, Co, or Ni (Fig. 7A).

In Arabidopsis, the difference in the Co concentra-
tion in the shoots of the wild type and fpn2 increased 
under low-Fe conditions (Morrissey et  al. 2009). To 
investigate whether Fe affected Co and Ni accumu-
lation between the wild type and osfpn1-1, we ana-
lyzed the accumulation of Co and Ni in their shoots 
and roots under various Fe conditions. There was no 
large difference in growth under the tested conditions 

https://ricexpro.dna.affrc.go.jp/
https://ricexpro.dna.affrc.go.jp/
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(Additional file  1: Fig. S5). Co was higher in osfpn1-1 
under most of the Fe conditions than in the wild type 
(Fig. 7B). However, the opposite scenario was observed 
in the roots. The difference in Co accumulation in the 
shoots between the wild type and osfpn1-1/1187_n was 
larger under 0 μM Fe conditions than under normal Fe 
(90 µM) conditions, as well as the difference in the Co 
accumulation in roots (Fig.  7B). A similar pattern was 
observed for Ni (Fig.  7C). These results indicated that 
OsFPN1 is involved in the root-to-shoot translocation 
of Co and Ni, particularly under low-Fe conditions.

Discussion
Through ionome screening, we isolated osfpn1-1 and 
identified OsFPN1 as a gene responsible for Co and Ni 
accumulation, as well as for tolerance to high Co or Ni 
conditions. It has been reported that plant FPN has a 
wide substrate specificity. For instance, Arabidopsis 
FPN2 and poplar PgIREG1 can transport Co or Ni (Mor-
rissey et al. 2009; Merlot et al. 2014; Yokosho et al. 2016). 
In buckwheat, FeIREG1 is involved in Al detoxification 
(Yokosho et al. 2016). In this study, heterologous expres-
sion of GFP-OsFPN1 in yeast increased the sensitiv-
ity to high concentrations of Co (Fig. 6B). Furthermore, 
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Fig. 4  Sensitivity of osfpn1-1 and osfpn1-2 to high Co and Ni. Shoot (left panel) and root (right panel) lengths (A) and dry weight (B) of 
one-week-old plants grown in Kimura B solution transferred without Co or Ni application, or 10 or 100-µM Ni application in Kimura B solution for 
two weeks. Data represent the means ± SD (n = 5). Student’s t-test (compared to Hitomebore or Nipponbare). **p < 0.01, *p < 0.05
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the yeast experiment suggested the Co and Ni transport 
activities of OsFPN1 (Fig. 6C). These results suggest that 
OsFPN1 can transport Co and Ni in rice.

In the yeast experiments, the yeast carrying OsFPN1 
exhibited increased sensitivity to high Co and accumu-
lated less Co and Ni than the empty vector. In a previ-
ous report on Arabidopsis FPN, it was suggested that 
FPN proteins could be transported from the cytosol to 
the outside of the cell or into the vacuole (Morrissey et al. 
2009). OsFPN1 in yeast is localized to a dot-like struc-
ture, as well as the plasma membrane (Fig. 6A). Consid-
ering the direction of transport and plasma membrane 
localization, OsFPN1 transports Co2+ and Ni2+ to the 
outside of the cell, leading to low Co2+ and Ni2+ contents 
(Fig. 6C). In contrast, the yeast exhibited high Co sensi-
tivity (Fig. 6B). This is contradictory to the result of the 
yeast Co and Ni concentrations because, if Co is exported 
to the outside of the cell, the yeast would exhibit toler-
ance, similar to the COT1-expressing yeast. The reason 
for this is currently unknown, but may be due to the high 
accumulation of Co in a dot-like organelle, such as the 
Golgi. Inside the organelle, the Co2+ and Ni2+ contents 
would be sufficiently high to inhibit the reaction, leading 
to growth inhibition.

OsFPN1 was localized to the Golgi when transiently 
expressed in protoplasts prepared from rice (Fig.  5). In 
Arabidopsis, FPN1 and FPN2 are localized to the plasma 
membrane and vacuole, respectively (Schaaf et  al. 2006; 

Morrissey et  al. 2009). In our experiments, both C-ter-
minal and N-terminal fusion proteins were localized to 
the Golgi in rice, and GFP-OsFPN1 exhibited Co and Ni 
transport activity in yeast (Figs. 5, 6). These results indi-
cate that GFP-OsFPN1 is functional and that the fusion 
protein reflects the function and localization of endog-
enous OsFPN1. In plants, there are currently no reports 
indicating that the Golgi are a storage site of Co. It has 
been reported that Co highly accumulates in the perinu-
clear fraction of human keratinocytes, and can accumu-
late in the endoplasmic reticulum or Golgi (Ortega et al. 
2009). Therefore, the Golgi apparatus might be a storage 
site for Co in rice.

Conclusion
Our study shows that OsFPN1 mediates Co and Ni trans-
port, and is involved in the detoxification of Co and Ni. 
From the viewpoint of application, a high Co content in 
grains and leaves would be useful for the biofortification 
of grasses as it would resolve Co deficiencies in sheep and 
cattle.

Materials and Methods
Plant Materials and Growth Condition
The ionome mutant, hereafter termed 1187_n, was 
isolated from EMS-mutagenized Oryza sativa cv. 
Hitomebore in a previous study (Tanaka et  al. 2016). 
For hydroponic cultivation, surface-sterilized seeds 
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Fig. 5  Subcellular localization of OsFPN1. Transient expression of OsFPN1-GFP and GFP-OsFPN1 in protoplasts prepared from 10-d-old rice leaf 
sheaths. OsCTL1-RFP was used as the Golgi marker. Bar = 10 µm
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of rice were sown in a germination solution [0.19 mM 
CaCl2 ·2H2O, 2  mM MES (pH = 5.8)] for one week, 
transferred to Kimura B solution (0.35 mM (NH4)2SO4, 
0.47  mM MgSO4•7H2O, 0.54  mM KNO3, 0.18  mM 
Ca(NO3)2•4H2O, 0.17  mM Na2HPO4•12H2O, 90  μM 
Fe-citrate, 0.19  mM CaCl2, 4.6  μM MnSO4•5H2O, 
0.18  μM H3BO3, 0.10  μM Na2MoO4•2H2O, 0.15  μM 
ZnSO4•7H2O, and 0.16  μM CuSO4•5H2O) supple-
mented with 0.1  μM of Li, Rb, Cs, Sr, Cd, As, Se, Co, 
Ni, and Ge, and grown for an additional three weeks in 

a growth chamber at 28  °C under 16  h light/8  h dark 
conditions. For the Co, Ni, and Fe treatment, NiCl2, 
CoCl2, and Fe-citrate were supplied, respectively. In 
all hydroponic experiments, the solution was renewed 
every 7 d. For the seeds grown in soil, the surface-
sterilized seeds were germinated in tap water for one 
week and then transplanted into commercial soil (Hon-
ensu soil, Kumiai Kagaku) and grown for an additional 
three weeks in a growth chamber at 28  °C under 16  h 
light/8 h dark conditions.
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Fig. 6  Functional characterization in yeast. A GFP-COT1 and GFP-OsFPN1 localization in the cot1 yeast mutant. Bar = 10 µm. B High Co tolerance 
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or Ni for 1 h, and Co and Ni were determined by ICP-MS. n = 3–6. Dunnett’s test compared to the vector, **p < 0.01
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Element Determination
The plants were separated into shoots and roots and 
washed with ultrapure water. After drying at 70  °C 
for 3 d, the dry weights of the shoots and roots were 
measured and digested with HNO3. After dissolving the 
digested samples in 0.08 M HNO3 containing 2 ppb of 
In (internal control), the element concentrations were 
determined by Inductively coupled plasma-mass spec-
trometry (ICP-MS) (Agilent, Agilent 7800).

Genotyping of F2 Crosses Between 1187_n 
and Hitomebore
1187_n was backcrossed with wild-type Hitomebore, 
and a self-fertilized F2 population was used to confirm 
the correlation between the phenotype (Co and Ni) and 
genotype. Genotyping was conducted using dCAPS 
markers and primers Nos. 1 and 2 (Additional file  1: 
Table S1).
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Fig. 7  Effect of Fe on Co and Ni accumulation. A OsFPN1 expression levels in the shoots (black) or roots (gray) of 10-d-old seedlings under 0, 9, and 
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in the shoots (left panel) and roots (right panel) of 21-d-old seedlings. The x-axis represents the Fe concentration (µM). Plants were grown in a 
hydroponic culture. Data represent the mean ± SD (n = 8–10). Student’s t-test (compared to Hitomebore). *p < 0.05; **p < 0.01
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Plasmid Constructs and Transformation
For the subcellular localization of OsFPN1, coding 
sequences (CDS) were amplified with primers Nos. 7 and 
8 for GFP-OsFPN1, or Nos. 7 and 9 for OsFPN1-GFP 
(Additional file 1: Table S1). The amplified fragment was 
ligated into the EcoRI and XhoI sites of the pENTR2B-
dual entry vector (Life Technologies) using a DNA liga-
tion kit (Ligation High ver.2, TOYOBO). CDS was cloned 
into pMDC45 or pMDC85 vectors (Curtis and Gross-
niklaus 2003) using LR clonase (Life Technologies). For 
OsCTL1-red fluorescent protein (RFP), a Golgi marker, 
CDS was amplified using primers Nos. 10 and 11 (Addi-
tional file 1: Table S1). The CDS was ligated into the XbaI 
and SalI sites of the pENTR2B-dual entry vector using a 
DNA ligation kit (Ligation High ver.2, TOYOBO). CDS 
was cloned into the destination vector pGWB554 (Naka-
gawa et al. 2009), which contains RFP, using LR clonase 
(Life Technologies).

To generate CRISPR/Cas9 mutant lines of OsFPN1, 
20-nt (primers Nos. 14 and 15; Additional file 1: Table S1) 
targeting the gene was annealed and introduced into the 
pU6gRNA vector (Mikami et  al. 2015). pU6gRNA was 
digested with AscI and PacI, and the digested fragment 
was inserted into the AscI and PacI sites of pZH_OsU6g-
RNA_MMCas9 (Mikami et al. 2015). The construct was 
transformed into Agrobacterium tumefaciens EHA105 
and used for rice transformation (Ozawa 2012). Oryza 
sativa cv. Nipponbare was used for transformation in all 
experiments, and mutations in OsFPN1 CRISPR/Cas9 
mutants were identified using primers Nos. 16 and 17 by 
direct sequencing (Additional file 1: Table S1).

To generate an expression vector expressing GFP-
COT1p in the yeast experiments, the GFP fragment was 
amplified with primers Nos. 18 and 19, and the CDS of 
COT1 was amplified with primers Nos. 12 and 13 (Addi-
tional file  1: Table  S1). GFP and COT1 fragments were 
directly cloned into the XhoI and SalI sites of pKT10-
myc (Tanaka et al. 1990) using an In-Fusion® HD Clon-
ing Kit (TOYOBO). GFP-OsFPN1 was amplified with 
primers Nos. 20 and 21 (Additional file 1: Table S1) from 
pMDC45 carrying GFP-OsFPN1, and the fragment was 
cloned into the EcoRI and SalI sites of pKT10-myc using 
a DNA ligation Kit (Ligation High ver.2, TOYOBO).

Confocal Laser Scanning Microscopy Observation
Plasmids of GFP-OsFPN1 or OsFPN1-GFP were co-
transformed with OsCTL1-RFP into 10-d-old rice pro-
toplasts prepared from leaf sheaths grown in 0.5 × MS 
medium following the protocol described by Zhang 
(Zhang et  al. 2011). After incubation in W5 solution 

(154  mM NaCl, 125  mM CaCl2, 5  mM KCl, and 2  mM 
MES at pH 5.7) at 25 °C for 16–20 h (Wu et al. 2012), the 
fluorescence of GFP and RFP was observed by confocal 
microscopy (FV1000, Olympus). The excitation and emis-
sion wavelengths were set at 473 nm and 500–525 nm for 
GFP and 559 and 600–660 nm for RFP, respectively.

Yeast Growth Assay and Element Uptake Experiments
The plasmids were introduced into Co- and Ni-sensitive 
mutants, cot1 (MATa, ura3Δ0, leu2Δ0, his3Δ1, met15Δ0, 
and YOR316c::kanMX4) (Conklin et  al. 1992). After 
transformation, two independent colonies were isolated 
and used in the experiments. The yeast was cultivated 
overnight in SD uracil-free medium, and the OD600 was 
adjusted to 1.0. After a series of dilutions, the yeast was 
spotted onto SD uracil-free media supplemented with 
1-mM Co or without Co and incubated at 30 °C.

To determine the elements in yeast, the yeast was incu-
bated overnight and adjusted to the same optical density 
(OD600 = 0.3), and then incubated in SD uracil-free liquid 
medium supplemented with 50  μM of Co or 50  μM of 
Ni for 1 h. After incubation, the yeast cells were washed 
three times with cold ultrapure water and dried overnight 
at 70  °C. The dried cells were then digested with HNO3 
at 70  °C for 1 h. After dilution with 0.08-M HNO3 con-
taining 2 ppb of In, the samples then underwent ICP-MS 
analysis.

RNA Extraction and Expression Analysis
The total RNA was extracted from 10-d-old seedlings 
using an RNeasy Plant Mini Kit (Qiagen) following the 
manufacturer’s instructions. Approximately 500 ng of the 
total RNA was reverse-transcribed to cDNA using a Pri-
meScript RT reagent kit (Takara), which was then diluted 
10 times and used for quantitative (q) PCR using TB 
Green® Premix Ex TaqTM II (Tli RNaseH Plus, Takara). 
OsActin1 (Zhang et  al. 2004) was used as an internal 
control for qPCR. Nos. 3 and 4, and Nos. 5 and 6 prim-
ers were used for the qPCR of OsFPN1 and OsActin1, 
respectively (Additional file 1: Table S1).

Statistical Analysis
The sample size is described in the figure legend and 
statistical analysis was performed with GraphPad Prism 
software (https://​www.​graph​pad.​com/​scien​tific-​softw​
are/​prism/).

Abbreviations
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