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Abstract 

With the improvement of people’s living standards and rice trade worldwide, the demand for high-quality rice is 
increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improv‑
ing rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality 
research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main 
components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), 
and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure 
and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, 
embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually 
affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the 
rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for 
multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemi‑
cals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. 
Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these 
quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality 
rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating 
rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will 
facilitate and advance future high quality rice breeding programs.
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Introduction
Rice is the major food crop for more than half of the 
world’s population. Breeding elite rice with high yield 
and quality are the major goals of crop geneticists and 
rice breeders. In recent decades, benefiting from the 

discovery and application of "green revolution gene" 
and "heterosis", rice yield has improved greatly (Evenson 
and Gollin 2003; Pingali 2012; Chen et al. 2019; Liu et al. 
2020; Wu et al. 2020). However, the progress of rice qual-
ity-related research and breeding practices lag far behind 
that of rice yield. This might reflect the emphasis placed 
on rice yield in the past, the complexity of rice quality 
studies, and the lack of consensus definitions and evalu-
ation standards of rice quality. As people’s living stand-
ards and the worldwide rice trade improve, the demand 
for high-quality rice is increasing. Therefore, breeding 
high quality rice is critical to meet market demand. A 
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series of physical and chemical indexes are used for the 
comprehensive evaluation of rice quality during the rice 
processing and cooking. In general, rice quality is divided 
into four main sections: milling quality (MQ), appear-
ance quality (AQ), nutritional quality (NQ), and eating 
and cooking quality (ECQ) (Fig. 1) (Bao 2014). Rice MQ 
refers to the integrity of rice during processing, includ-
ing the roughness rate, milled rice rate, and head rice 
rate. AQ usually includes grain shape, chalkiness, trans-
parency, and other indicators. Rice NQ is influenced 
by the quantity and quality of starch, protein, vitamins, 
minerals, and other phytochemicals that are beneficial 
to human health. ECQ mainly reflects the characteristics 
and palatability of cooked rice. Amylose content (AC), gel 
consistency (GC), gelatinization temperature (GT), and 
the results gained using a rapid viscosity analyzer (RVA) 

are usually used as indirect indicators to estimate rice 
ECQ (Zhang et al. 2016).

In general, rice grain quality should be closely cor-
related with rice seed characteristics. In brief, the rice 
seed structure mainly includes the spikelet hull, seed 
coat, aleurone layer, embryo, and endosperm (Fig.  2). 
The size, composition, and quality of these seed struc-
tures affect rice quality markedly. For example, in most 
cases, the size of the spikelet hull determines the grain 
size. Grain size is an important rice agronomic trait, 
which is not only a key element of rice yield, but also is 
a direct index for rice quality. Rice grain size includes 
grain length, width, thickness, and the ratio of length 
to width, which usually affects rice AQ, MQ, and ECQ. 
Recently, a series of grain size-related genes have been 
cloned successfully and functionally dissected (Li et al. 

Fig. 1  The scope of rice quality includes the following four parts, appearance quality (AQ), milling quality (MQ), nutritional quality (NQ), eating and 
cooking quality (ECQ)
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2019). The endosperm is the major edible part of rice 
seed. Therefore, the composition and proportion of 
endosperm components are the most important deter-
minants of rice quality. In general, the rice endosperm 
includes starch, storage protein, lipids, minerals, and 
other trace elements. Among them, starch and protein 
are two major components of rice endosperm, account-
ing for approximately 80% and 10%, respectively, of the 
weight of milled rice (Wang et  al. 2020a). As the larg-
est constituent of rice endosperm, starch consists of 
two glucose polymers, amylose and amylopectin. The 
amylose content (AC) and amylopectin structure cor-
relate tightly with rice ECQ (Leng et al. 2014). In addi-
tion, the arrangement of starch granules will affect rice 
AQ. For example, a looser arrangement of starch grains 
will form cavities inside or between the starch granules, 
thus decreasing the transparency of the rice grain and 
resulting in the so-called opaque or chalky endosperm 
(Zhang et  al. 2017). As for proteins, the second larg-
est component of rice endosperm, their content and 
amino acid composition will affect almost all aspects of 

rice quality (Duan and Sun 2005). Moreover, other sub-
stances in the endosperm, including lipids, free amino 
acids, minerals, vitamins, and other phytochemicals, 
albeit present in lower in quantities, are crucial for 
rice NQ. The other structures of rice seeds, including 
the embryo, seed coat, and aleurone layer, are rich in 
protein, fat, vitamins, and minerals. For example, func-
tional metabolites, such as gamma aminobutyric acid 
(GABA), are enriched in embryo and aleurone layer 
compared with that in the endosperm (Pereira et  al. 
2021).

Each structure of the rice seed correlates with vari-
ous rice quality traits, and rice grain development is 
directly controlled by many genes; hence, cloning and 
dissecting these quality-genes will aid the breeding 
of high quality rice. Therefore, this review focused on 
summarizing the recently cloned key genes involved 
in regulating rice seed structure and composition, and 
their roles in modulation of rice qualities (Table  1), 
which will facilitate and advance future high quality 
rice breeding programs.

Fig. 2  Overview of the main structure and components based on the longitudinal section of mature rice seeds. AQ, appearance quality; MQ, 
milling quality; NQ, nutritional quality; ECQ, eating and cooking quality. Not drawn in proportion
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Table 1  List of genes involved in controlling rice seed structures and grain qualities

Gene ID Gene name Protein category Effect the quality References

Spikelet hull & grain size & grain quality

G protein pathway

 Os03g0407400 GS3 Gγ subunit Grain length (AQ) Fan et al. (2006)
Mao et al. (2010)
Sun et al. (2018a)

 Os09g0441900 DEP1/qPE9 Gγ subunit Grain length (AQ) Zhou et al. (2009)
Huang et al. (2009)

 Os03g0635100 RGG1 Gγ subunit Grain length (AQ) Tao et al. (2020)

 Os02g0137800 RGG2 Gγ subunit Grain length (AQ) Miao et al. (2019)

 Os08g0456600 GGC2 Gγ subunit Grain length (AQ) Sun et al. (2018a)

 Os05g0333200 D1/RGA1 Gα subunit Grain length (AQ) Fujisawa et al. (1999)
Ashikari et al. (1999)
Sun et al. (2018a)

 Os03g0669200 RGB1 Gβ subunit Grain length (AQ) Utsunomiya et al. (2011)
Zhang et al. (2021b)

The ubiquitin–proteasome pathway

 Os02g0244100 GW2 E3 ubiquitin ligase Grain width (AQ) Song et al. (2007)

 Os02g0244300 LG1/OsUBP15 Ubiquitin specific protease Grain width (AQ) Shi et al. (2019)

 Os03g0232600 TUD1 U-box E3 ubiquitin ligase Grain length (AQ) Hu et al. (2013)

 Os02g0512400 OsGRX8/WG1 CC-type glutaredoxin Grain length, grain width (AQ) Hao et al. (2021)

 Os06g0265400 OsbZIP47 bZIP transcription factor Grain width (AQ) Hao et al. (2021)

 Os08g0537800 WTG1/OsOTUB1 Deubiquitinating enzyme Grain width, grain thickness (AQ) Huang et al. (2017)

 Os06g0650300 GW6a/OslHAT1 GNAT-like Protein Grain length (AQ) Song et al. (2015)
Gao et al. (2021)

 Os05g0551000 CLG1/OsHRZ2 RING E3 ubiquitin ligase Grain length (AQ) Yang et al. (2021b)

Mitogen-activated protein kinase (MAPK) signaling

 Os02g0787300 OsMKK4/SMG1 Mitogen-activated protein 
kinase kinase

Grain length, grain width (AQ) Duan et al. (2014)
Guo et al. (2018)

 Os06g0154500 OsMAPK6/DSG1 Mitogen activated pro‑
tein kinase

Grain length, grain width (AQ) Liu et al. (2015b)

 Os04g0559800 SMG2/OsMKKK10 Mitogen activated protein 
kinase kinase kinase

Grain length, grain width (AQ) Xu et al. (2018)

 Os01g0699500 OsMKKK70 Mitogen activated protein 
kinase kinase kinase

Grain length, grain width (AQ) Liu et al. (2021)

 Os01g0699600 OsMKKK62 Mitogen activated protein 
kinase kinase kinase

Grain length, grain width (AQ) Liu et al. (2021)

 Os05g0115800 OsMKP1/GSN1 MAPK phosphatase Grain length, grain width (AQ) Guo et al. (2018)
Xu et al. (2018)

Phytohormone perception and homeostasis

 Brassinosteroids

  Os03g0602300 BRD1/OsDWARF Brassinosteroid biosynthetic 
enzyme

Grain length (AQ) Hong et al. (2002)
Mori et al. (2002)

  Os10g0397400 BRD2 Brassinosteroid biosynthetic 
enzyme

Grain length (AQ) Hong et al. (2005)

  Os04g0469800 D11/ CYP724B1 Brassinosteroid biosynthetic 
enzyme

Grain length (AQ) Tanabe et al. (2005)
Zhu et al. (2015)
Wu et al. (2016b)
Zhou et al. (2017c)

  Os05g0187500 GW5/GSE5/qGW5 Calmodulin binding protein Grain width, chalkiness (AQ)
Milled rice rate (MQ)

Weng et al. (2008)
Shomura et al. (2008)
Liu et al. (2017)
Duan et al. (2017)

  Os05g0207500 OsGSK2 GSK3/SHAGGY-like kinase Grain length (AQ) Tong et al. (2012)

  Os02g0236200 OsGSK3 GSK3/SHAGGY-like kinase Grain length (AQ) Gao et al. (2019)



Page 5 of 27Li et al. Rice           (2022) 15:18 	

Table 1  (continued)

Gene ID Gene name Protein category Effect the quality References

  Os07g0580500 OsBZR1 Transcription factor in BR 
pathway

Grain length, grain width, grain 
thickness (AQ)

Zhu et al. (2015)

  Os02g0517531 LARGE1/ OML4 MEI2-like protein Grain length, grain width (AQ) Lyu et al. (2020)

  Os06g0127800 DLT/D62/GS6 GRAS family protein Grain width (AQ) Tong et al. (2009)
Sun et al. (2013)

  Os05g0158500 GS5 Putative serine carboxypepti‑
dase

Grain width (AQ) Li et al. (2011)
Xu et al. (2015)

  Os05g0343400 OsWRKY53 WRKY transcription factor Grain length, grain width (AQ) Tian et al. (2017)

  Os08g0174700 OsBAK1 BRI1-associated receptor kinase Grain length, grain width (AQ) Li et al. (2009)

  Os03g0646900 GL3.1/GL3-1/qGL3/OsPPKL1 Ser/Thr phosphatase Grain width (AQ) Hu et al. (2012)
Qi et al. (2012)
Zhang et al. (2012a)
Gao et al. (2019)

  Os04g0674500 OsmiR396d MicroRNA Grain length, grain width (AQ) Miao et al. (2020)

  Os02g0701300 GS2/GL2/OsGRF4/PT2/ LGS1 Growth-regulating factor Grain length, grain width (AQ) Che et al. (2015)
Duan et al. (2015)
Hu et al. (2015)
Sun et al. (2016)
Li et al. (2016)
Sun et al. (2016)

  Os05g0458600 OsLAC Laccase-like protein Grain length, grain width (AQ) Zhang et al. (2013)
Zhong et al. (2020)

  Os02g0169400 OsAGO17 Argonaute protein Grain length, grain width (AQ) Zhong et al. (2020)

  Os09g0448500 GS9 Transcriptional activator Grain width, chalkiness (AQ) Zhao et al. (2018)

  Os01g0718300 OsBRI1/D61 BR receptor kinase Grain length, grain width (AQ) Yamamuro et al. (2000)

  Os01g0226700 OFP1 OVATE family protein Grain length, grain width (AQ) Xiao et al. (2017)

  Os01g0732300 OFP3 OVATE family protein Grain length, grain width (AQ) Xiao et al. (2020)

  Os01g0864000 OFP8 OVATE family protein Grain length, grain width (AQ) Yang et al. (2016a, b)

  Os05g0324600 OFP19 OVATE family protein Grain length (AQ) Yang et al. (2018a)

  Os05g0477200 OFP22 OVATE family protein Grain length, grain width (AQ) Chen et al. (2021)

  Os10g0515400 GW10 Cytochrome P450 subfamily 
protein

Grain length, grain width (AQ) Zhan et al. (2021)

  Os07g0175100 POW1 Homeodomain-like protein Grain length, grain width (AQ) Zhang et al. (2021c)

 Auxin

  Os06g0623700 TGW6 Protein with IAA-glucose hydro‑
lase activity

Grain length, grain width (AQ) Ishimaru et al. (2013)
Akabane et al. (2021)
Kabir and Nonhebel (2021)

  Os03g0175800 BG1 Positive regulator of auxin 
response and transport

Grain length, grain width (AQ) Liu et al. (2015a)

  Os03g0841800 qTGW3/GL3.3/qGL6 GSK3/SHAGGY-like kinase Grain length, grain width, grain 
thickness (AQ)

Hu et al. (2018)
Xia et al. (2018)
Ying et al. (2018)

  Os02g0164900 OsARF6 Auxin response factor Grain length (AQ) Qiao et al. (2021)

  Os05g0447200 OsAUX3/qGL5 Auxin influx carrier Grain length (AQ) Qiao et al. (2021)

 GA

  Os06g0266800 OsGSR1/GW6/OsGASR7 GA-stimulated protein Grain length, grain width (AQ) Shi et al. (2020)

 Cytokinin

  Os01g0680200 OsPUP4/ BG3 Purine permease Grain length, grain width, grain 
thickness (AQ)

Xiao et al. (2019)
Yin et al. (2020)

  Os04g0615700 OsAGO2 AGO family protein Grain length (AQ) Yin et al. (2020)

Transcriptional regulatory factors

 SQUAMOSA promoter binding protein-like (SPL) family

  Os07g0505200 OsSPL13/GLW7 Squamosa promoter-binding-
like protein

Grain length, grain width (AQ) Si et al. (2016)
Segami et al. (2017)
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Table 1  (continued)

Gene ID Gene name Protein category Effect the quality References

  Os11g0247300 SRS5/TID1 Alpha-tubulin protein Grain length, grain width (AQ) Sunohara et al. (2009)
Segami et al. (2012)
Segami et al. (2017)

  Os08g0531600 qGW8/OsSPL16 Squamosa promoter binding-
like protein

AC, GC (ECQ))
Protein content (NQ)

Wang et al. (2012)
Wang et al. (2015a)

  Os07g0603300 GL7/GW7 TRM-containing protein Grain length, grain width, chalki‑
ness (AQ) AC, GC (ECQ))
Protein content (NQ)

Wang et al. (2015c)

 APETALA2-type (AP2) transcription factors

  Os05g0389000 SMOS1/SHB AP2-type transcription factor Grain length, grain width (AQ) Aya et al. (2014)

  Os07g0235800 SSH1 AP2-like transcription factor Grain length, grain width (AQ) Jiang et al. (2019)

 Basic helix-loop-helix (bHLH) family

  Os04g0350700 An-1 Basic helix-loop-helix protein Grain length (AQ) Luo et al. (2013)

  Os03g0171300 PGL1 Atypical non-DNA-binding 
bHLH protein

Grain length (AQ) Heang and Sassa (2012)

Other transcription factors

  Os06g0666100 GL6/SG6 PLATZ transcription factor Grain length (AQ) Wang et al. (2019)
Zhou and Xue (2020)

  Os03g0215400 OsMADS1/qLGY3 MADS-domain transcription 
factor

Grain length (AQ) Liu et al. (2018b, a)
Yu et al. (2018)

  Os03g0333200 FLR1 Receptor-like kinase Grain width, chalkiness (AQ) Wang et al. (2021)

  Os01g0769700 FLR2 Receptor-like kinase Grain length (AQ) Wang et al. (2021)

 Other functional proteins

  Os08g0485500 GAD1 Secretory signal peptide Grain length (AQ) Jin et al. (2016)

  ORGLA04G0254300 GL4 Myb like protein similar to SH4/
SHA1

Grain length (AQ) Wu et al. (2017)

Os07g0214300 RAG2 16-kDa α-amylase/trypsin 
inhibitor

Grain length, grain width (AQ)
Protein content,
lipid content (NQ)

Zhou et al. (2017b)

Endosperm components and grain quality

Starch

 Os06g0133000 Wx Granule-bound starch synthase AC, GC, GT (ECQ) Transparency, 
chalkiness (AQ)
Digestion, RS (NQ)

Wang et al. (2010)
Zhang et al. (2019a)
Huang et al. (2020)
Zhang et al. (2021a)
Zhou et al. (2021a)

 Os02g0744700 OsSSIIb/SSII-2 Soluble starch synthase AC, GC, GT (ECQ)
Transparency (AQ)
Protein content (NQ)

Li et al. (2018a, b)
Xu et al. (2020)

 Os06g0229800 OsSSIIa/SSII-3/ALK Soluble starch synthase GT (ECQ) Umemoto et al. (2002)
Gao et al. (2003)
Chen et al. (2020)
Zhang et al. (2020)

 Os08g0191433 OsSSIIIa/FLO5 Soluble starch synthase Chalkiness (AQ)
AC, GC (ECQ)
Digestion, RS (NQ)

Fujita et al. (2007)
Zhou et al. (2016)

 Os02g0528200 OsSBEIIb/SBE3 Starch branching enzyme Chalkiness (AQ)
AC, GC (ECQ)
Digestion, RS (NQ)

Zhu et al. (2012)
Baysal et al. (2020)
Miura et al. (2021)

 Os07g0182000 OsbZIP58/ RISBZ1 bZIP transcription factor Chalkiness (AQ)
AC (ECQ)

Yamamoto et al. (2006)
Kawakatsu et al. (2009)
Wang et al. (2013)

 Os02g0725900 OsNF-YB1 Component of the NF-Y/HAP 
transcription factor complex

Grain length, grain width, chalki‑
ness (AQ) AC (ECQ)
Protein content, lipid content 
(NQ)

Bello et al. (2019)
Xu et al. (2021)
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Table 1  (continued)

Gene ID Gene name Protein category Effect the quality References

Os10g0191900 OsNF-YC12/OsNF-YC11 Nuclear transcription factor Y 
subunit C

Grain length, grain width, chalki‑
ness (AQ) AC (ECQ)
Protein content, lipid content 
(NQ)

Bello et al. (2019)
Xiong et al. (2019)

 Os12g0189500 OsYUC11 Flavin-containing monooxy‑
genase

Grain length, grain width, chalki‑
ness (AQ) Protein content, lipid 
content (NQ)

Xu et al. (2021)

Os02g0682200 OsMADS6/AFG1 MADS-box protein Grain length, grain width (AQ)
AC, GC (ECQ)
Protein content (NQ)

Zhang et al. (2010)

 Os02g0170300 OsMADS29 MADS-box protein Shrunken seeds (AQ)
AC (ECQ)

Yin and Xue (2012)
Nayar et al. (2013)

 Os08g0531700 OsMADS7/OsMADS45 MADS-box protein AC (ECQ) Zhang et al. (2018a)

 Os01g0104500 OsNAC20/ONAC020 NAC transcription factor Grain width, grain thickness (AQ)
Starch content (ECQ)
Protein content (NQ)

Wang et al. (2020a)

 Os01g0393100 OsNAC26/ONAC026 NAC transcription factor Grain width, grain thickness (AQ)
Starch content (ECQ)
Protein content (NQ)

Wang et al. (2020a)

 Os03g0686900 FLO6 CBM48 domain-containing 
protein

Transparency, chalkiness (AQ)
Starch content (ECQ)
Protein content, lipid content 
(NQ)

Peng et al. (2014)

 Os07g0688100 FLO18 PPR protein Transparency, chalkiness (AQ)
AC, starch content (ECQ)
Protein content, lipid 
content(NQ)

Yu et al. (2021)

 Os03g0168400 FLO10 PPR protein Transparency (AQ) Protein con‑
tent, lipid content (NQ)

Wu et al. (2019)

 Os08g0290000 FGR1 Nuclear-localized PPR protein Grain thickness, transparency 
(AQ) AC, starch content (ECQ)

Hao et al. (2019)

 Os03g0728200 FLO14 Nuclear-localized PPR protein Chalkiness (AQ) Xue et al. (2019)

 Os07g0181000 OsPK2/PKpα1 Plastidic pyruvate kinase Starch content (ECQ) Protein 
content, lipid content (NQ)

Cai et al. (2018)

Protein

 Os10g0400200 OsGluA2/qGPC-10 Glutelin type-A2 precursor GC, starch content (ECQ)
Protein content (NQ)

Yang et al. (2019)

 Os05g0499100 Glb1 26 kDa α-gloubulin Seed storage protein (NQ) Wu et al. (1998)

 Os01g0762500 GluA1 Glutelin type-A Seed storage protein (NQ) Qu et al. (2008)

 Os02g0249800 GluB1a Glutelin type-B Seed storage protein (NQ) Wu et al. (1998)

 Os02g0249900 GluB1b Glutelin type-B Seed storage protein (NQ) Wu et al. (1998)

 Os02g0268300 GluB4 Glutelin type-B Seed storage protein (NQ) Qu and Takaiwa (2004)

 Os02g0268100 GluB5 Glutelin type-B Seed storage protein (NQ) Qu et al. (2008)

 Os02g0722400 OsAAP10 Amino acid permease AC, RVA (ECQ)
Protein content (NQ)

Wang et al. (2020b)

 Os12g0631100 OsRab5a/gpa1 Small GTPase Chalkiness (AQ) Protein content 
(NQ)

Ren et al. (2020)

 Os06g0643000 OsGPA5 Rab5a effector Chalkiness (AQ)
Protein content (NQ)

Ren et al. (2020)

 Os03g0835800 GPA3 Regulator of post-Golgi vesicular 
Traffic

AC (ECQ)
Protein content (NQ)

Ren et al. (2014)

 Os08g0127100 OsHT/OsLHT1 Amino acid transporter AC, GC (ECQ)
Protein content (NQ)

Guo et al. (2020a)
Guo et al. (2020b)

 Os02g0252400 RPBF/OsDof3 Prolamin box binding factor Starch content (ECQ) Protein 
content, lipid content (NQ)

Kawakatsu et al. (2009)

 Os07g0668600 OsGZF1 CCCH‐type zinc‐finger transcrip‑
tion factor

Glutelin content (NQ) Chen et al. (2014)
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Table 1  (continued)

Gene ID Gene name Protein category Effect the quality References

Lipid/fat

 Os02g0716500 OsFAD2-1 Fatty acid desaturase Lipid content (NQ) Shi et al. (2012)

 Os12g0104400 OsFAD3 Fatty acid desaturase Lipid content (NQ) Liu et al. (2012)

 Os03g0369100 OsLTP36 Lipid transfer protein Lipid content (NQ) Wang et al. (2015b)

 Os04g0436100 OsACOT Acyl-CoA thioesterase Grain length, grain width (AQ)
Lipid content (NQ)

Zhao et al. (2019)

 Os08g0110700 FSE1 Phospholipase-like protein Lipid content (NQ) Long et al. (2018)

 Os01g0172400 OsPLDα1 Phospholipase Dα Phytic acid content (NQ)
AC,GT, setback viscosity, viscos‑
ity profiles (ECQ)

Khan et al. (2019)
Khan et al. (2020)

Lysine (Amino acids)

 Os01g0927900 AK2 Aspartate kinase Lysine content (NQ) Yang et al. (2020)

 Os04g0574800 DHPS Dihydrodipicolinate synthase Lysine content (NQ) Yang et al. (2020)
Yang et al. (2021a)

 Os02g0783700 OsLKR/SDH Lysine ketoglutarate reductase Lysine content (NQ) Yang et al. (2020)

Fe, Zn (Minerals)

 Os08g0207500 OsZIP4 Zinc-regulated transporter Zinc content (NQ) Ishimaru et al. (2007b)

 Os05g0472700 OsZIP5 Zinc-regulated transporter Zinc content (NQ) Lee et al. (2010a)

 Os07g0232800 OsZIP8 Zinc-regulated transporter Zinc content (NQ) Lee et al. (2010b)

 Os03g0667500 OsIRT1 Iron-regulated transporter Iron content (NQ) Lee and An (2009)

 Os03g0667300 OsIRT2 Iron-regulated transporter Iron content (NQ) Nakanishi et al. (2006)

 Os11g0106700 OsFER1 Rice ferritin protein Iron content (NQ) Stein et al. (2009)

 Os12g0106000 OsFER2 Rice ferritin protein Iron content (NQ) Stein et al. (2009)

 Os03g0307300 OsNAS1 Nicotianamine synthase Iron content (NQ) Inoue et al. (2003)

 Os03g0307200 OsNAS2 Nicotianamine synthase Iron content (NQ) Inoue et al. (2003)

 Os07g0689600 OsNAS3 Nicotianamine synthase Iron content (NQ) Inoue et al. (2003)

 Os04g0542200 OsYSL9 Probable metal-nicotianamine 
transporter

Iron content (NQ) Senoura et al. (2017)

 Os04g0463400 OsVIT1 Vacuolar membrane transporter Iron content (NQ) Zhang et al. (2012b)

 Os09g0396900 OsVIT2 Vacuolar membrane transporter Iron content (NQ) Zhang et al. (2012b)

Phytochemicals

 Os08g0424500 OsBadh2 Betaine aldehyde dehydroge‑
nasea

2-AP content (ECQ) Chen et al. (2006)
Chen et al. (2008)
Kovach et al. (2009)
Bradbury et al. (2010)
Hui et al. (2021)

Embryo and grain quality

 Os07g0603700 OsGE Cytochrome P450 Embryo size (NQ) Nagasawa et al. (2013)

 Os04g0447800 OsGAD2 Glutamate decarboxylase GABA content (NQ) Akama and Takaiwa (2007)
Akama et al. (2009)

 Os02g0112900 OsGABA-T γ-aminobutyrate transaminase GABA content (NQ) Shimajiri et al. (2013)

 Os03g0236200 OsGAD3 Glutamate decarboxylase GABA content (NQ) Akama et al. (2020)

Aleurone layer and grain quality

 Os05g0509700 TA1/OsmtSSB1 Mitochondrion-targeted single-
stranded DNA binding protein

Thick aleurone (NQ) Li et al. (2021)

 Os01g0218032 TA2-1/OsROS1 DNA demethylase Thick aleurone (NQ) Liu et al. (2018a)

Seed coat and grain quality

 Os07g0211500 Rc bHLH protein Anthocyanin content (NQ) Sweeney et al. (2006)

 Os01g0633500 Rd/OsDFR Dihydroflavonol reductase Anthocyanin content (NQ) Furukawa et al. (2007)

 Os04g0557500 Kala4/OsB2 bHLH transcription factor Anthocyanin content (NQ) Oikawa et al. (2015)

 Os06g0205100 OsC1 MYB transcriptional activator Anthocyanin content (NQ) Sun et al. (2018b)

 Os02g0682500 OsTTG1 WD40 repeat protein Anthocyanin content (NQ) Yang et al. (2021c)
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Genes Regulating Spikelet Hull Development 
and Their Roles in Grain Qualities
In general, rice MQ correlates negatively with the grain 
length, grain length–width ratio, and grain length–thick-
ness ratio, and positively with the grain width, grain 
thickness, and grain width–thickness ratio. Hence, 
reducing the length and increasing the width and thick-
ness of rice grains are beneficial to improving rice MQ. 
Rice AQ is usually related to grain size, chalkiness, and 
transparency. The chalky grain percentage correlates 
positively with the 1000-grain weight, grain width, grain 
thickness, and grain width–thickness ratio. There is a 
significant positive correlation between the grain width 
and chalkiness. The grain filling rate of a wide grain is 
too fast, which leads to a looser arrangement of gran-
ules and the subsequent formation of chalkiness. Chalki-
ness is a negative element of rice quality, the higher the 
chalkiness, the poorer AQ, MQ, and ECQ of rice (Cheng 
et  al. 2005; Yamakawa et  al. 2007). For example, chalky 
rice breaks more easily during processing, resulting in 
less head rice and a decreased MQ. In contrast, smaller 
or slender seeds have less chalkiness because of the short 
distance for grain filling. Therefore, decreasing the rice 
grain width could promote rice AQ. Importantly, grain 
weight loss resulting from reduced grain width could be 
compensated by increasing the grain length. In conclu-
sion, breeding elite rice with a slender grain shape is a 
practical strategy to improve rice quality without sacrific-
ing its yield.

Therefore, the study of grain size has become a hot 
research topic among rice geneticists and breeders. At 
present, more than 400 quantitative trait loci (QTLs) 
linked to grain size have been mapped on all 12 chromo-
somes of rice, and over 80 grain size-related genes have 
been cloned (Huang et al. 2013; Zuo and Li 2014). Most 
importantly, several grain shape genes have been used 
in rice breeding practice, such as GS3 and DEP1/qPE9 
(Huang et  al. 2009; Zhou et  al. 2009). This topic is well 
documented by several review papers (Li and Li 2016; 
Azizi et al. 2019; Li et al. 2019). Therefore, we have only 
summarized the functions and regulatory mechanisms of 
the key cloned genes related to grain size, especially the 
newly identified genes (Fig. 3).

G Protein Pathways
The heterotrimeric G-protein complex consists of Gα, 
Gβ, and Gγ subunits. GS3, encoding a non-canonical 
Gγ subunit, is a main QTL controlling grain length and 
is a negative regulator of grain size (Fan et al. 2006). The 
gs3 allele corresponds to long rice grains. The GS3 pro-
tein contains four functional domains, and the organ size 
regulation (OSR) domain is both necessary and sufficient 

to limit grain size (Mao et al. 2010). DEP1/qPE9, encod-
ing another noncanonical Gγ subunit, is a major QTL 
for rice panicle architecture and grain size (Huang et al. 
2009; Zhou et al. 2009). The dep1/qpe9-1 allele, encoding 
a truncated protein, leads to erect panicles and smaller 
grains. Consistently, overexpression of DEP1 increases 
the grain size, while knockout of the gene makes the 
grains smaller (Sun et al. 2018a). DEP1/qPE9-1 regulates 
starch accumulation positively, mainly through promot-
ing the expression of starch biosynthesis-related genes, 
thus prolonging the duration of the grain filling process, 
which finally affects the grain size (Zhang et al. 2012b).

In addition to GS3 and DEP1, the G protein γ subu-
nits also include RGG1, RGG2 and GGC2. Grain size is 
regulated positively by GGC2 and negatively by RGG1 
and RGG2 (Kato et al. 2004; Sun et al. 2018a; Miao et al. 
2019; Xu et al. 2019). Recently, RGG1 was reported to be 
involved in regulating the cytokinin content, thus form-
ing a G protein-cytokinin module to control rice grain 
size (Tao et  al. 2020). In addition, genetic analysis indi-
cated that these Gγ proteins require Gα (RGA1) and 
Gβ (RGB1) subunits to control grain length (Sun et  al. 
2018a). A recent report indicated that RGB1 not only 
controls the grain size, but also controls the grain fill-
ing process by regulating the expression of OsNF-YB1, 
encoding a critical downstream effector of RGB1. In 
addition, OsNF-YB1 directly interacts with the OsYUC11 
promoter to stimulate its expression, thus altering auxin 
homeostasis, starch biosynthesis and grain size (Zhang 
et al. 2021b).

The Ubiquitin–Proteasome Pathway
The ubiquitin proteasome pathway (UPP) is an important 
system in eukaryotes that regulates protein stability and 
activity. GW2, a main QTL controlling grain width and 
weight, encodes a nuclear ring E3 ubiquitin ligase (Song 
et  al. 2007). A loss of function allele of GW2 promotes 
the proliferation of spikelet shell cells and produces wide 
grains. Importantly, this mutation notably enlarges the 
grain size and increases rice yield, but has little effect 
on rice AQ and ECQ. Large grain1-D (lg1-D) encodes 
a ubiquitin-specific protease 15 (OsUBP15). Loss-of-
function of OsUBP15 or suppressing its expression 
generates narrower rice seeds, while OsUBP15 overex-
pression increases rice grain width significantly. Moreo-
ver, OsUBP15 and GW2 genetically interact with each 
other to co-regulate grain width (Shi et al. 2019).

WG1 encodes a CC glutaredoxin that promotes grain 
growth by enhancing cell proliferation, while OsbZIP47 
negatively regulates grain width and weight by suppress-
ing cell proliferation. WG1 interacts with and inhibits the 
transcriptional activity of transcription factor OsbZIP47 
by recruiting ASP1, a transcriptional co-repressor. 
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Moreover, WG1 is ubiquitinated by E3 ubiquitin ligase 
GW2 and is subsequently degraded. Genetic analysis 
demonstrated that the three proteins form a GW2-WG1-
OsbZIP47 molecular regulatory module to coordinate 
grain size and weight (Hao et al. 2021).

TUD1 (Taihu Dwarf1) encodes a functional U-box 
E3 ubiquitin ligase, which interacts directly with D1/
RGA1 to regulate plant height and grain size. In addition, 
TUD1 and D1 work together to regulate brassinoster-
oid (BR) signaling and produce short grains by reduc-
ing cell division (Hu et  al. 2013). OsTUB1/WIDE AND 
THICK GRAIN (WTG1), encoding a deubiquitinase, 
controls grain size by affecting cell proliferation. Knock-
out of OsTUB1/WTG1 resulted in wider grains (Huang 
et al. 2017). In addition, two recent studies revealed novel 
regulators involved in UPP-mediated grain size regula-
tion. One is HOMOLOG OF DA1 ON RICE CHROMO-
SOME 3 (HDR3), a ubiquitin interacting motif (UIM) 
type active ubiquitin receptor, can interact with and 

stabilize GW6a to slow down its degradation, thus pro-
moting cell division and increasing the grain filling rate, 
which ultimately regulates grain size positively (Gao et al. 
2021). GW6a is a histone acetyltransferase, whose over-
expression increases grain weight and yield by increasing 
the cell number and accelerating grain filling (Gao et al. 
2021). The other protein is Chang Li Geng1-1 (CLG1-1), 
an E3 ubiquitin ligase, which can ubiquitinate and medi-
ate the degradation of GS3, thus changing G protein sign-
aling and regulating the grain length (Yang et al. 2021b).

Mitogen‑Activated Protein Kinase (MAPK) Signaling
The MAPK cascade signaling pathway also plays an 
important role in regulating rice grain size. Typi-
cal MAPK pathways are usually composed of MAPKs, 
MAPK kinases (MKKs) and MKK kinases (MKKKs) 
(Zhang et  al. 2018b). The OsMKKK10-OsMKK4-
OsMAPK6 molecular cascade positively regulates rice 
grain size and weight (Xu et  al. 2018). Disruption the 

Fig. 3  The cloned genes and the major regulatory networks controlling rice size. Rice seed size is regulated by multiple signaling pathways, 
including G protein pathways, the ubiquitin–proteasome pathway, MAPK signaling pathways, phytohormones, and transcription regulatory factors. 
A dotted line indicates that the genetic relationship needs to be further verified. MAPK, Mitogen-Activated Protein Kinase; AQ, appearance quality; 
MQ, milling quality; ECQ, eating and cooking quality
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expression of either member leads to smaller rice grains, 
while overexpression of these genes produces larger 
rice grains (Duan et al. 2014; Liu et al. 2015b). Further-
more, OsMAPK6 phosphorylates the transcription factor 
OsWRKY53 and enhances its activity (Tian et al. 2017), 
while GSK2 directly phosphorylates WRKY53 and lowers 
its stability (Tian et al. 2021).

In addition, OsMKKK70 also functions through the 
established OsMKK4–OsMAPK6–OsWRKY53 module 
(Liu et al. 2021). Overexpression of OsMKKK70 leads to 
longer grain length and increased rice leaf angle. Moreo-
ver, overexpression of the genes encoding constitutively 
active OsMKK4, OsMAPK6, and OsWRKY53 in the con-
text of osmkk62/70 double mutation can partially restore 
its phenotype of grain size and leaf angle, implying that 
these elements operate in the same regulatory pathway.

GSN1 encodes the mitogen activated protein kinase 
phosphatase, OsMKP1. Suppression of GSN1 expression 
induces the proliferation of rice glume cells, resulting in 
larger but fewer rice grains. GSN1 directly interacts with 
and inactivates OsMAPK6 through dephosphorylation, 
thus playing an opposite role to OsMKK4 (Guo et  al. 
2018; Xu et  al. 2018). Therefore, the key to controlling 
rice grain size is to accurately regulate OsMAPK6 activity 
through reversible phosphorylation.

Phytohormone Perception and Homeostasis
Plant hormones, as central regulators of plant growth 
and development, not only orchestrating intrinsic devel-
opmental programs, but also conveying environmental 
inputs. Recently, a series of publications reported that 
some phytohormones, including BR, auxin, gibberellic 
acid (GA), and cytokinin, also play essential roles in regu-
lating seed size via multiple molecular mechanisms.

BR is Involved in the Regulation of Grain Size
BRs, a group of plant-specific polyhydroxylated steroidal 
hormones, control a wide range of growth and devel-
opmental events, including grain size (Li et  al. 2018b). 
Some BR mutants with defects in both BR biosynthesis 
or signaling, such as brd1 (Hong et al. 2002; Mori et al. 
2002), dwaf2 (Hong et  al. 2005), dwaf11 (Tanabe et  al. 
2005; Zhu et al. 2015; Wu et al. 2016b; Zhou et al. 2017c), 
OsBRI1/D61 (Yamamuro et  al. 2000), OsBAK1 (Li et  al. 
2009), GS6/DLT/D62 (Tong et al. 2009; Sun et al. 2013), 
and OsBZR1 (Zhu et  al. 2015), usually exhibit shorter 
plants and smaller grains. One exception is GSK2, which, 
as a GSK3/SHAGGY like kinase homologous to Arabi-
dopsis BIN2 in rice, is a central negative regulator of 
the BR pathway. Therefore, suppressing GSK2 expres-
sion increased both grain size and leaf angles (Tong et al. 
2012). Therefore, BR is a growth-promoting hormone 
with positive roles in regulating rice grain size.

GW5 is a main QTL for grain width with three hap-
lotypes (Zhou et al. 2017a). GW5 participates in the BR 
pathway and regulates grain width and weight by inhib-
iting the function of GSK2 kinase, thus releasing the 
active forms of OsBZR1 and DLT transcription factors 
(Liu et al. 2017). Meanwhile, GW5 also affects rice qual-
ity, including the chalkiness rate, brown rice rate, and 
milled rice rate. GS5, encoding a serine carboxypeptidase 
(Yu et  al. 2000), is a QTL controlling rice grain width. 
Increased expression of GS5 inhibits the endocytosis of 
OsBAK1-7 and subsequently increases BR signaling and 
promotes grain size (Xu et al. 2015).

GL3.1/GL3-1/qGL3/OsPPKl1 encodes a protein phos-
phatase OsPPKl1, which regulates rice grain length 
negatively by dephosphorylating OsGSK3 and inhibiting 
BR signaling (Hu et al. 2012; Qi et al. 2012; Zhang et al. 
2012a; Gao et al. 2019). OsmiR396d regulates grain size 
by repressing the growth regulator GS2/GL2/OsGRF4, 
and GSK2 plays a similar inhibitory function, thereby 
affecting cell proliferation and grain shape (Che et  al. 
2015; Duan et al. 2015; Hu et al. 2015; Li et al. 2016; Sun 
et al. 2016). A recent study also showed that OsAGO17 
forms an RNA-induced silencing complex (RISC) with 
OsmiR397b, which then affects rice development by 
inhibiting the expression of OsLAC, encoding a negative 
regulator of both grain size and grain number per panicle 
(Zhang et al. 2013; Zhong et al. 2020). Moreover, GSK2 
interacts with and phosphorylates OML4, a negative reg-
ulator of grain size, thus modulating OML4 protein sta-
bility. Therefore, GSK2 and OML4 act in the same genetic 
pathway to regulate rice grain size (Lyu et al. 2020).

The mutation of GS9, encoding a novel transcriptional 
activator, leads to slender rice grains and reduced chalki-
ness, without affecting other major agronomic traits 
(Zhao et  al. 2018). GS9 directly interacts with OVATE 
family proteins, thus forming a transcriptional complex 
to regulate glume cell division. Moreover, OFP8 and 
OFP14 inhibit the transcriptional activation activity of 
GS9, while OFP8 is directly suppressed by OsGSK2 in 
the BR pathway (Yang et al. 2016a). In addition to OFP8 
and OFP14, several other OFP proteins also participate in 
grain size regulation via the BR pathway, including OFP1 
(Xiao et al. 2017), OFP3 (Xiao et al. 2020), OFP19 (Yang 
et al. 2018a), and OFP22 (Chen et al. 2021). Among them, 
OFP1 is a positive regulator of BR signaling and seed size, 
while the others are all negative regulators.

Furthermore, two novel BR-related grain size genes 
were reported recently. One is GW10, encoding a P450 
subfamily 89A2 homology protein, which plays a posi-
tive role in controlling grain size through the BR pathway 
(Zhan et  al. 2021). The other is POW1 (Put On Weight 
1), encoding an unknown protein. The pow1 mutant 
enhanced the endogenous BR content, leading to an 
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enlarged leaf angle and grain size. Interestingly, down-
regulating the expression of BR biosynthesis or signaling 
genes could only restore the leaf angle phenotype of pow1 
mutant, not the grain size. Further analysis shows that 
POW1 regulates grain size by inhibiting the transactiva-
tion activity of TAF2, its interacting protein. Hence, two 
regulatory modules, POW1-TAF2 and POW1-BR, are 
established that specifically regulate the grain size and 
leaf angle, respectively (Zhang et al. 2021c).

Auxin
Auxin is an important classical phytohormone with 
essential roles in many aspects of plant growth and devel-
opment events, including grain size. qTGW6, as a main 
QTL controlling rice grain weight, encodes indole-3-ace-
tic acid (IAA)-glucose hydrolase to generate free IAA. A 
loss-of-function TGW6 allele promoted grain length and 
weight (Ishimaru et al. 2013). Recent research indicated 
that TGW6 is exclusively expressed in pre-emergent 
inflorescences, suggesting that TGW6 might play impor-
tant roles in regulating pollen development (Akabane 
et al. 2021; Kabir and Nonhebel 2021).

BG1, an auxin primary response gene, encodes a pro-
tein that participates in the regulation of auxin trans-
port. It affects grain size by promoting cell division and 
elongation (Liu et  al. 2015a). qTGW3/GL3.3 is a major 
QTL for grain weight, encoding a SHAGGY-like kinase 
41 (OsSK41) (Hu et  al. 2018; Xia et  al. 2018; Ying et  al. 
2018). OsSK41 directly interacts with and phosphorylates 
OsARF4, a transcription repressor in the auxin pathway. 
Moreover, the OsSK41-OsARF4 module regulates rice 
grain size negatively by modulating the expression of a 
number of auxin-response genes. Recently, another tran-
scription factor, OsARF6, was reported to bind directly 
to the OsAUX3 promoter to increase its expression (Qiao 
et  al. 2021). OsARF6 and OsAUX3 regulate rice grain 
length and weight negatively by modulating the auxin 
content and distribution in glume cells, consequently 
affecting rice grain longitudinal elongation. miR167a, 
a positive regulator of grain length and weight, directly 
silences OsARF6 mRNA. Hence, a novel miR167a-
OsARF6-OsAUX3 regulatory module is established 
successfully.

GA
The tetracyclic diterpenoid phytohormone GA has multi-
ple roles in plant growth and development. However, the 
participation of GA in regulating rice grain size is rarely 
reported. Recently, Shi et al. (2020) indicated that a QTL 
for grain size, designated as GW6 (GRAIN WIDTH 6), 
was successfully cloned. GW6, encoding a GA-induced 
GAST family protein, plays positive roles in regulat-
ing grain size and weight. Moreover, knockout of GW6 

reduced the GA content in young panicles. Importantly, a 
natural variation in the CAAT-box of the GW6 promoter 
determines its transcript abundance, as well as the grain 
width and weight, thus providing valuable natural genetic 
resources for rice breeding programs.

Cytokinin
A dominant mutant big grain 3 (bg3-D) was isolated, 
which featured larger rice grains. BG3, encoding a purine 
permease, OsPUP4, regulates grain size positively by con-
trolling both the long-distance transport and local allo-
cation of cytokinin (Xiao et al. 2019). Recently, Yin et al. 
(2020) reported that ARGONAUTE (AGO) proteins are 
essential to assemble RNA-induced silencing complexes 
to silence target genes. Overexpression of AGO2 boosts 
both the salt-stress resistance and grain length of rice by 
modulating the histone methylation level of BG3, hence 
promoting its expression. Salt treatment results in a simi-
lar cytokinin distribution pattern to AGO2 overexpres-
sion rice, implying that the cytokinin distribution pattern 
is critical to regulate stress tolerance and rice grain size.

Transcription Factors
Transcription factors (TFs) play vital roles in regulat-
ing plant growth and development by responding to 
upstream signals and modulating downstream transcrip-
tional networks. Certain TFs are also involved in control-
ling seed size.

SQUAMOSA Promoter Binding Protein‑Like (SPL) 
Transcription Factor Family
SPL transcription factors are involved in controlling 
the tiller, panicle configuration, and grain size of rice. A 
genome-wide association analysis (GWAS) indicated 
that a major QTL GLW7, encoding the TF OsSPL13, is 
a key element leading to larger grains and more panicles 
(Si et al. 2016). GLW7 binds directly to the promoter of 
SRS5, a positive regulator of grain length, and activates 
its expression (Segami et  al. 2017). Suppressing the 
expression of OsSPL16/GW8 produces long grains, and 
thus decreased chalkiness and improved transparency of 
rice seeds (Wang et al. 2012). GW8 directly binds to the 
GW7/GL7 promoter and inhibits its expression (Wang 
et  al. 2015a). GW7, encoding a TONNEAU1-recruiting 
motif protein, plays a positive role in producing slender 
grains via differential regulation of cell division in both 
longitudinal and transverse directions. Importantly, a 
semi-dominant GW7 allele enhances rice grain quality 
without any yield penalty (Wang et al. 2015c). Therefore, 
the identified OsSPL16/GW8-GW7 regulatory module 
should be useful in future elite rice breeding programs to 
improve both rice quality and yield. SPLs are known to 
be regulated by microRNAs, such as miR156 (Xie et  al. 
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2006). Recently, two regulatory modules, miR529a-SPLs 
and OsmiR156-SPL4, are revealed and their essential 
roles in controlling rice grain size are studied (Hu et al. 
2021; Yan et al. 2021).

APETALA2‑Type (AP2) Transcription Factors
SMOS1/SHB encodes an APETALA2 (AP2) transcrip-
tion factor with an incomplete AP2 domain. The grains 
and other organs of smos1 mutants are smaller because 
of the smaller cells and an abnormal microtubule orien-
tation. SMOS1 directly modulates the transcription of a 
cell expansion regulator, phosphorylation inducible pro-
tein 1 (OsPHI-1) (Aya et al. 2014). SMOS1 interacts with 
SMOS2/DLT to form a key protein complex to orches-
trate BR and auxin signaling, thereby coordinating rice 
growth and development, including grain size (Hirano 
et al. 2017). Moreover, Suppression of Shattering 1 (SSH1) 
is a novel allele of SUPERNUMERARY BRACT​ (SNB), 
encoding an AP2 transcription factor. A point mutation 
in the ninth intron of SNB alters its mRNA splicing and 
decreases SNB expression, consequently reducing rice 
shattering and increasing grain size (Jiang et al. 2019).

Basic Helix‑Loop‑Helix (bHLH) Family
Awn-1(An-1) encodes a bHLH protein that regulates 
awn development, grain size, and grain number in rice. 
Increased An-1 expression causes long awns and grains, 
but decreases the grain number per panicle (Luo et  al. 
2013). PGL1 is an atypical bHLH protein without DNA 
binding activity. Overexpression of PGL1 increases the 
grain length and weight while, APG exerts an opposite 
effect. PGL1 interacts directly with APG to regulate grain 
size antagonistically (Heang and Sassa 2012).

Other Transcription Factors
SHORT GRAIN 6 (SG6)/GL6 encodes a plant spe-
cific PLTAZ transcription factor which regulates grain 
length positively by promoting cell proliferation in 
young panicles and grains (Wang et al. 2019; Zhou and 
Xue 2020). GL6 interacts with RPC53 and OsTFC1 
to participate in the RNA polymerase III transcrip-
tion machinery and regulates the expression of genes 
involved in rice grain development and the cell cycle, 
thus regulates grain length positively (Wang et  al. 
2019). FLR family proteins, such as FLR1, FLR2, and 
FLR8, play negative roles, while FLR15 plays a posi-
tive role, in regulating grain size. Although the grains 
of the flr8 mutant are larger, their quality remains the 
same. Moreover, FLR1 can modulate the number of 
glume cells and the expression of starch metabolism 
genes, thus affecting seed size and grain filling (Wang 
et  al. 2021). qLGY3/OsLG3b, a QTL for grain length, 
encodes the MADS-domain transcription factor, 

OsMADS1. qLGY3/ OsLG3b allele leads to the alterna-
tive splicing of OsMADS1, which is artificially selected 
and corresponds to a long grain phenotype (Liu et  al. 
2018b; Yu et al. 2018). GS3 and DEP1 directly interact 
with MADS1 to promote its transcriptional activity and 
hence inhibit grain growth (Liu et al. 2018b).

Other Functional Proteins
GAD1 encodes a small secretary signal peptide and its 
mutation leads to reduced grain numbers, shorter grains, 
and awnless rice. Mechanistically, GAD1 regulates the 
length of the grain and awn by modulating cell numbers 
(Jin et al. 2016). GL4, a QTL for grain length originating 
from African rice, encodes a Myb-like protein similar to 
SH4/SHA1. GL4 controls grain length by regulating the 
elongation of longitudinal cells of both the outer and 
inner glumes. A single nucleotide polymorphism (SNP) 
mutation in GL4 leads to a premature stop codon and 
consequently a truncated protein, which results in small 
seeds and the loss of seed shattering during African rice 
domestication (Wu et al. 2017). In addition, overexpres-
sion of RAG2, encoding a 16-kDa α-amylase/trypsin 
inhibitor, significantly increases the grain size and 1000-
grain weight, as well as the protein and total lipid con-
tents (Zhou et al. 2017b).

Genes Regulating Endosperm Components 
and Their Roles in Grain Quality
The components of the rice endosperm include starch, 
proteins, amino acids, lipids, vitamins, minerals, and 
other metabolites. Among them, starch and protein 
account for about 80% and 10% of the dry weight of rice 
endosperm, respectively (Wang et  al. 2020a). Therefore, 
the constitution and quality of starch and protein con-
tribute majorly to rice grain quality (Fig.  4). In general, 
starch is the primary determinant of rice ECQ and AQ 
(Li et al. 2018a). For example, rice AC influences a series 
of quality related parameters, including hardness, viscos-
ity, and transparency. Proteins are considered as the most 
important elements of rice NQ. Their content and qual-
ity determine rice NQ. Protein quality is mainly evalu-
ated by assessing essential amino acids, such as lysine. In 
contrast to starch and protein, the content of lipid is low 
in rice, accounting for only about 0.3–0.6% of rice weight 
(Morrison 1988). The lipid content, similar to the protein 
content, correlates negatively with rice ECQ. Neverthe-
less, lipids have a great influence on the storage, process-
ing, and consumption of rice. In addition to these three 
components, some micronutrients and phytochemicals 
are also important in rice quality, such as vitamins and 
minerals (Buttery et al. 1983; Kovach et al. 2009).
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Genes Controlling Starch Biosynthesis, Their 
Transcriptional Regulation, and Their Effects on Rice 
Quality
Starch Biosynthesis Enzymes
Starch is mainly stored in the form of starch granules in 
endosperm cells. According to their different glycosidic 
bond connections, starch is usually classified into two 
groups, amylose and amylopectin. The amylose content 
(AC) is the most important effector of rice ECQ (Duan 
and Sun 2005). According to their different ACs, rice vari-
eties can be divided into waxy (< 2%), very low (3–9%), 
low (10–19%), intermediate (20–25%), and high (> 25%) 
amylose types (Zhang et al. 2017). In general, the higher 
the AC, the harder the texture of the cooked rice. Mean-
while, the AC is also related closely to rice transparency 

(Li et al. 2018a). Glutinous rice, lacking almost all amyl-
ose, has a completely opaque, waxy endosperm.

To date, almost all the genes encoding key enzymes 
involved in starch biosynthesis have been cloned and 
studied, such as ADP-glucose pyrophosphorylases 
(AGPases), granule-bound starch synthases (GBSSs), sol-
uble starch synthases (SSSs), starch branching enzymes 
(SBEs), debranching enzymes (DBEs), and starch phos-
phorylase (PHO) (Zemach et al. 2010; Seung and Smith 
2019). Detailed information related to starch biosynthe-
sis is well summarized by some excellent reviews (Huang 
et al. 2020, 2021a); therefore, we will only focus on sev-
eral key genes that determine rice quality.

AGPase uses glucose-1-phosphate (Glu-1-P) as a sub-
strate to generate ADPglucose, which is then used to 

Fig. 4  The genes involved in the synthesis and regulation of the main components of the endosperm, and their contributions to corresponding 
rice quality traits. The dotted line indicates that an indirect relationship that is supported by genetic evidence, which needs to be further verified. 
AQ, appearance quality; NQ, nutritional quality; ECQ, eating and cooking quality
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synthesize amylose via GBSSI, and to generate amylo-
pectin via the cooperation of a series of other enzymes, 
including SSSs, SBEs, and DBEs (Jeon et al. 2010; Pfister 
and Zeeman 2016). Among them, GBSSI, encoded by the 
Waxy (Wx) gene, is the sole enzyme directly controlling 
amylose synthesis, and is thus the primary determinant 
of rice AC, GC, and pasting property (Wang et al. 2010). 
Therefore, Wx has been studied extensively and used 
widely to improve rice ECQ. Hence, a number of useful 
natural Wx alleles have been cloned and applied in rice 
breeding practice. Up to now, about ten natural Wx alleles 
have been reported, including the newly cloned Wxlv and 
Wxmp/Wxla (Zhang et al. 2019a, 2021a; Zhou et al. 2021a). 
The wx allele, a null allele that does not encode a func-
tional GBSSI, exists in glutinous rice, AC < 2% (Wan-
chana et al. 2003). Wxa and Wxb are two major Wx alleles 
that are distributed widely in most indica rice and japon-
ica rice varieties, respectively, corresponding to high and 
low ACs.

The discovery of the Wx ancestor gene, Wxlv, and the 
differentiation of its functional sites might explain the 
evolutionary trend of the AC, from high to low dur-
ing rice domestication (Zhang et  al. 2019a). The AC 
decreased slightly because of the variation in amino 
acid sequence caused by a SNP mutation in exon 6 of 
Wxin. Rice with the Wxop/Wxhp (AC ~ 12.8%), Wxmp 
(AC ~ 10.5%), and Wxmq (AC ~ 10%) alleles are the so 
called soft rice (Hiroyuki et al. 2002; Mikami et al. 2008; 
Liu et al. 2009; Zhang et al. 2021a; Zhou et al. 2021a, b), 
which are famous for their good taste and high ECQ. 
The rare allele Wxmw/Wxla, derived from the homolo-
gous recombination of Wxin and Wxb, has a low AC, high 
transparency, good taste, and excellent ECQ (Zhang et al. 
2021a; Zhou et  al. 2021a). In addition to the identifica-
tion of natural Wx alleles, the CRISPR/Cas9 gene editing 
strategy was also applied for accurate editing and to gen-
erate novel and excellent Wx alleles (Huang et  al. 2020; 
Zeng et al. 2020).

The synthesis of amylopectin is complex and is coordi-
nately regulated by several groups of enzymes. Moreover, 
each group contains several different types of enzymes. 
For example, SSS comprises SSSI, SSSII, SSSIII, and 
SSSIV. Except for SSSI, the other type of SSS all contain 
more than one isoform. Each enzyme isoform plays a dis-
tinct role in amylopectin biosynthesis. In general, SSSI 
prolongs the amylopectin by synthesizing short chains, 
while SSSII synthesizes medium-length amylopectin. 
SSSIIa/ALK is the major gene regulating rice GT (Gao 
et  al. 2003). The different expression levels and allele 
types of ALK are the main cause for the differential amy-
lopectin structure between indica and japonica subspe-
cies (Umemoto et  al. 2002). Two SNP-induced amino 
acid mutations affect the function of SSSIIa, resulting 

in a decrease in the branch chain length and GT (Bao 
et al. 2006). Recently, a detailed analysis of various ALK 
alleles, including a new identified ALKd allele, was per-
formed, which clarified their roles in regulating rice GT, 
AC, and general taste values, demonstrating ALK is a 
crucial molecular target to improve rice ECQ (Chen et al. 
2020; Zhang et al. 2020). Another SSSII isoform, SSSII-2, 
was reported to have the potential to improve rice qual-
ity. Suppressing SSSII-2 expression produced a novel 
soft rice with a low AC, improved taste, and transparent 
endosperm (Li et  al. 2018a). Furthermore, simultaneous 
modulation of SSSII-2, SSSIIa, and Wx coordinated the 
biosynthesis of amylose and amylopectin, hence success-
fully improving rice ECQ (Huang et al. 2021b).

SSSIII synthesizes long amylopectin chains and SSSIIIa 
is an important target to study amylopectin biosynthesis 
and breed healthy rice. Resistant starch (RS) can reduce 
the incidence of type 2 diabetes and reduce the probabil-
ity of obesity; therefore, high RS rice is considered to be a 
healthy food. SSIIIa affects the structure of amylopectin, 
the amylose content, and the physicochemical properties 
of starch grains in indica rice together with the Wxa allele, 
resulting in a higher AC and an increased lipid content, 
subsequently increasing the amount of amylose–lipid 
complex and RS starch (Zhou et al.2016). That study sug-
gested that modulating the SSSIIIa and Wx genes could 
benefit future breeding of high RS rice (Zhou et al. 2016).

Transcription Factors
The biosynthesis of starch is crucial to both seed devel-
opment and propagation, and a number of transcription 
factors are involved in regulating the expression of starch 
synthesis-related genes (SSRGs). OsbZIP58/RISBZ1 
binds specifically to the ACGT motif in the Wx gene pro-
moter (Wang et al. 2013), thus enhancing its expression. 
In addition, OsbZIP58 also binds to the promoters of 
AGPL3, SSSIIa, SBE1, and ISA2 to regulate their expres-
sion levels. bZIP58 is a core regulator of starch synthesis 
and its null mutant is chalky and its total starch and AC 
are decreased (Wang et al. 2013). In addition, OsbZIP58 
interacts with RPBF, a Dof family transcription factor, to 
participate in the synthesis of storage substances, includ-
ing starch, protein, and lipid, during rice endosperm 
development (Kawakatsu et al. 2009).

As an NF-Y transcription factor, OsNF-YB1 regulates 
endosperm sucrose transport and grain filling. Sup-
pression of OsNF-YB1 expression leads to development 
defects of rice seeds with increased grain chalkiness 
and a decreased AC, resulting in a decline in rice qual-
ity (Sun et al. 2014). Knockout of OsNF-YB1 resulted in 
an increased protein content and decreased grain size 
and contents of amylose, total starch, crude fiber, and 
lipid, subsequently altering rice quality (Bello et al. 2019; 
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Xu et al. 2021). In addition, OsNF-YB1 binds directly to 
the promoter of OsYUC11 and activates its expression. 
As a key element in auxin biosynthesis, OsYUC11 affects 
grain filling and the accumulation of endosperm storage 
products in rice (Xu et  al. 2021). Another NF-Y mem-
ber, NF-YC12, coordinates various pathways to regulate 
endosperm development and the accumulation of seed 
storage substances in rice. The phenotype of the osnf-
yb12 mutant is similar to that of the osnf-yb1 mutant, 
with changed grain weight, starch, and protein accumula-
tions (Bello et al. 2019; Xiong et al. 2019). Furthermore, 
NF-YB1 combines with NF-YC12 and bHLH144 to form 
an NF-YB1-YC12-bHLH144 heterotrimeric complex that 
coordinates grain development and rice quality. Hence, 
the mutation of any gene in the complex would change 
starch synthesis in the rice endosperm (Bello et al. 2019).

Several members of MADS box family transcription 
factors participate in the regulation of starch biosynthe-
sis. OsMADS6 is highly expressed in the endosperm and 
regulates the expression of SSRGs. Its mutation leads to 
decreased starch plumpness and abnormal endosperm 
development (Zhang et  al. 2010). Suppression of 
OsMADS29 expression caused abnormal seed develop-
ment, such as shrunken seeds, a low grain-filling rate, 
and insufficient starch accumulation. Evidences indi-
cates that OsMADS29 modulates the expression of genes 
related to programmed cell death (PCD), thus affecting 
the early development of rice seeds (Yin and Xue 2012). 
Another study revealed that OsMADS29 affects embryo 
and endosperm development, including starch biosyn-
thesis, by modulating cytokinin signaling and biosyn-
thesis (Nayar et al. 2013). As a high temperature induced 
gene, OsMADS7 encodes a protein involved in stabiliza-
tion of the AC in response to high temperature, mainly 
by enhancing the expression of GBSSI, the key enzyme 
controlling amylose biosynthesis. Therefore, OsMADS7 
is a valuable molecular target for breeding elite rice with 
ideal thermal tolerance and ECQ (Zhang et al. 2018a).

NAC transcription factors are plant-specific and par-
ticipate in various processes of plant development, 
including biosynthesis of storage substance of the rice 
endosperm. Mutation of OsNAC20 or OsNAC26 alone 
does not have any effect on rice grains. However, the con-
tents of starch and storage proteins in osnac20/26 double 
mutants are decreased. Further evidence demonstrated 
that OsNAC20 and OsNAC26 can promote the expres-
sion of multiple genes involved in starch and storage pro-
tein biosynthesis directly, such as those encoding SSSI, 
Pul, glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α glob-
ulin, and 16 kDa prolamin, thus regulating the synthesis 
of both starch and storage proteins (Wang et al. 2020a). 
ONAC127 and ONAC129 are not directly involved in 
starch synthesis in the rice endosperm. They regulate 

grain filling and starch accumulation by forming heter-
odimers, and participating in cytoplasmic transport and 
heat stress translation (Ren et al. 2021).

Other Proteins
In addition to the above mentioned starch synthesis-
related enzymes and transcription factors, other pro-
teins are involved in regulating starch biosynthesis. In 
general, the mutation of these genes, such as FLO6 (Peng 
et  al. 2014), FLO10 (Wu et  al. 2019), FLO14 (Xue et  al. 
2019), FLO18 (Yu et al. 2021), FGR1 (Hao et al. 2019) and 
OsPK2 (Cai et al. 2018), lead to defects in starch biosyn-
thesis and the formation of abnormal starch granules, 
resulting in opaque, chalky, or powdery grains. Interest-
ingly, only FLO6 shows a direct correlation with starch 
biosynthesis-related enzymes. FLO6 binds directly to 
starch through a CBM48 domain at the C terminus and 
to ISA1 through a domain at the N terminus, suggesting 
its role as a bridge between ISA1 and starch during starch 
synthesis (Peng et al. 2014).

Storage Proteins, Transporters of Amino Acids 
and Proteins, and Other Regulators of Proteins
Proteins are the secondary major components of rice 
endosperm, which could be divided into three categories, 
storage proteins, structural proteins, and protective pro-
teins. The protein content and its amino acid constitution 
affect rice NQ directly. Moreover, the protein content is 
also involved in the regulation of rice ECQ. In general, a 
negative correlation exists between the protein content 
and ECQ in rice (Hori et al. 2016).

Storage Proteins
The rice storage proteins (SSPs) can be divided into four 
categories, albumin, globulin, prolamine, and glutelin. 
Among them, glutelin, as the most abundant SSP, has the 
highest nutritional value because of its high digestibility 
and lysine content (He et  al. 2021). There are 15 glute-
lin encoding genes in the rice genome, which are classi-
fied into four subfamilies, GluA, GluB, GluC, and GluD 
(Kawakatsu and Takaiwa 2010). Glu genes encode 57 kDa 
pro-glutelin, consisting of a signal peptide, a 37  kDa 
acidic subunit, and a 20 kDa basic subunit. A SNP in the 
GluA2 promoter leads to a difference in the total protein 
content between indica and japonica rice. Hence, all hap-
lotypes can be divided into two expression types, OsGlu-
A2LET and OsGluA2HET. OsGluA2LET mainly exists in 
japonica rice, with low expression of OsGlu. Meanwhile, 
OsGluA2HET is highly expressed in indica rice. Therefore, 
the expression of OsGlu genes correlate closely with the 
grain total protein content and NQ (Yang et al. 2019).
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Transporters of Amino Acids and Proteins
Efficient amino acid transfer, depending on amino acid 
transporters (AATs), is essential for protein biosynthe-
sis in rice grains. Lysine-Histidine-type Transporter 1 
(OsLHT1) can transport a broad spectrum of amino 
acids effectively. OsLHT1 mutation leads to declined 
root uptake and consequent transfer of amino acids to 
rice shoots (Guo et al. 2020b). Moreover, Oslht1 mutant 
rice has a reduced panicle length, seed setting rate, grain 
number per panicle, and total grain weight. More N and 
free amino acids are retained in the flag leaf of the Oslht1 
mutant than in the wild-type at maturation, implying its 
essential roles in transferring amino acids from leaves to 
seeds, thus ensuring grain development and rice nutri-
tion quality (Guo et al. 2020a). Furthermore, a number of 
amino acid permeases (AAPs), a main type of AAT, are 
responsible for amino acid loading in rice seeds. Muta-
tion of OsAAP10 decreases the content of both protein 
and amylose in rice seeds. In addition, the RVA profile 
of osaap10 mutant seeds exhibits a higher peak viscos-
ity, disintegration value, and lower recovery value, thus 
improving the ECQ (Wang et al. 2020b). GPA1/OsRab5a, 
a small GTPase, regulates the transport of glutelin to pro-
tein body II (PBII) and affects the protein content. GPA3 
interacts directly with Rab5a and guanine exchange fac-
tor VPS9a, forming a regulatory complex with them. 
These three proteins regulate dense vesicle (DV)-medi-
ated post-Golgi transport synergistically in rice. The 
gpa3 mutant showed a powdery endosperm, abnormal 
accumulation of glutelin precursors, irregularly arranged 
starch grains, decreased amylose content, and increased 
levels protein and lipids (Ren et al. 2014). GPA5, an effec-
tor of Rab5a, is also required for post-Golgi trafficking of 
storage proteins (Ren et  al. 2020). GPA5 mutation also 
leads to a powdery white endosperm, resulting from 
the abnormal accumulation of glutelin precursors and 
a reduction in α globulin, consequently forming loosely 
arranged and round compound starch granules. GPA5 
interacts with class C core vacuole/endosome tethering 
(CORVET) complex and VAMP727-containing soluble 
N-ethylmaleimide sensitive factor attachment protein 
receptor (SNARE) complex to promote the fusion of 
DVs and protein storage vacuoles to complete glutelin 
transportation.

Other Regulators
In addition to the above mentioned storage or functional 
proteins, other regulators also participate in regulat-
ing the protein content in rice endosperm. For example, 
RISBZ1/OsbZIP58 and RPBF regulate the expression 
of seed storage protein genes and the consequent pro-
tein content (Kawakatsu et al. 2009). OsGZF1, a CCCH 
type zinc finger protein, binds specifically to the core 

promoter region of GluB-1, thereby suppressing its 
expression and the accumulation of glutelins (Chen 
et al. 2014). Moreover, transcription factors NAC20 and 
NAC26 also bind directly to the promoters of SSP genes 
and regulate their expression in rice (Wang et al. 2020a). 
In addition to transcriptional regulation, control of glu-
telin mRNA localization is another important mecha-
nism that modulates glutelin accumulation. The zip 
codes of storage protein mRNAs require assistance from 
RNA‐binding proteins (RBPs) for their correct localiza-
tion. RBP‐A, RBP‐P, RBP‐L, and Tudor‐SN are reported 
to bind to the mRNAs of both glutelin and prolamin to 
aid their localization (Wang et al. 2008; Doroshenk et al. 
2014; Chou et al. 2017, 2019; Tian et al. 2018; Tian et al. 
2019a). A recent study showed that a quaternary protein 
complex, including RBP‐P, RBP‐L, Rab5a, and a mem-
brane fusion protein NSF, cooperates to coordinate the 
transport of glutelin mRNAs in the rice endosperm (Tian 
et al. 2020).

Lipids
The main fatty acids in rice are palmitic acid (C16:0), 
oleic acid (C18:1), and linoleic acid (C18:2). Among 
them, linoleic acid is relatively good for human health. 
Lipids not only affect the rice NQ, but also influence the 
AQ and ECQ. Phospholipids and glycolipids can interact 
with starch in rice, thus reducing the water absorption 
and expansibility of starch, and can increase its GT.

The genes involved in carbon flow, lipid biosynthesis, 
transport, and oxidation affect the quantity and quality 
of lipids in rice. Pyruvate phosphate dikinase (encoded 
by OsPPDKB) regulates both carbon metabolism and car-
bon flow for starch and fat biosynthesis during rice fill-
ing. Its mutation produces a white powdery endosperm 
and a significantly increased fat content (Zhao et  al. 
2017). Another gene Floury Shrunken Endosperm1 
(FSE1), encoding a phospholipase-like protein, regulates 
galactolipid biosynthesis in the rice endosperm. FSE1 
mutation not only reduced the total galactolipid content 
significantly, but also caused abnormal amyloplast devel-
opment in the developing endosperm, thus providing a 
novel connection between lipid metabolism and starch 
synthesis in rice (Long et al. 2018).

Fatty acid desaturase (FAD) genes, including OsFAD2 
and OsFAD3, participate directly in different steps of 
fatty acid synthesis (Liu et al. 2012; Shi et al. 2012; Ding 
et  al. 2015). OsACOT, a major target of miR1432-medi-
ated cleavage, encodes acyl-CoA thioesterase, which is 
involved in the biosynthesis of medium-chain fatty acids. 
Suppression of miR1432 expression or overexpression of 
miR1432-resistant form of OsACOT (OXmACOT) pro-
moted rice grain filling rate and grain weight significantly. 
Moreover, the contents of palmitic acid and stearic acid 
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(18:0) in OXmACOT transgenic rice decreased, while 
those of the oleic acid and linoleic acid increased (Zhao 
et al. 2019).

Suppressing the expression of OsLTP36, encoding a 
lipid transporter, resulted in decreased contents of fatty 
acids and proteins, smaller and loose starch grains, and 
some other growth defects, including the seed setting 
rate, 1000-grain weight, chalkiness, and seed germina-
tion rate (Wang et  al. 2015b). Moreover, lipoxygenase 
(LOX) catalyzes lipid oxidation, which leads to aging 
and a decrease of nutrient level in rice (Cho and Lim 
2016). LOX-2 and LOX-3 regulate the degradation of 
fatty acids negatively, and suppression of their expression 
or loss-of-function mutation effectively prolonged the 
storage time and maintained a high nutritional value of 
rice (Long et al. 2013). Meanwhile, reducing the expres-
sion of LOX-3 could effectively reduce the degradation of 
β-carotene in golden rice (Huang et al. 2014; Zhou et al. 
2014). A recent study showed that mutation of OsPLDα1, 
encoding a phospholipase, changed lipid metabolites and 
reduced the phytic acid content strikingly (Khan et  al. 
2019). Further analysis indicated that the mutant brown 
rice shows some changes in ECQ properties, including a 
decreased AC, setback viscosity, and gelatinization tem-
perature (GT), as well as an increased disintegration rate, 
corresponding to improved ECQ and NQ (Khan et  al. 
2020).

Lysine
The types of amino acids and the proportion of essential 
amino acids also determine the nutritional quality of rice. 
Lysine (Lys) is considered as the first limiting essential 
amino acid in humans; however, its content in milled rice 
is quite low. Several strategies have been used to enhance 
the lysine content in rice, including overexpression of 
lysine-rich proteins and modulation of lysine metabolism 
pathways (Yang et  al. 2021a). For example, overexpres-
sion of lysine-rich histone proteins, RLRH1 and RLRH2, 
increased the lysine content of rice by 35% (Wong et al. 
2015). With regards to modulation of lysine metabolism 
pathway, one method is to enhance the expression of 
lysine biosynthesis genes, another is to block the catabo-
lism of lysine, thus promoting the lysine content of rice. 
AK and DHPS, two rate-limiting enzymes in the lysine 
biosynthesis pathway, are under strict feedback inhibi-
tion by lysine. By overexpressing modified Lys-insensitive 
AK or DHPS, the free lysine content increase by 6.6- to 
21.7-fold. When simultaneously expressing these two 
enzymes, the level of free lysine increased by 58.5-fold 
(Yang et  al. 2020, 2021a). Suppressing the expression of 
LKR/SDH gene, encoding lysine ketoglutaric acid reduc-
tase/saccharopine dehydropine dehydrogenase (LKR/
SDH), attenuated lysine catabolism and remarkably 

promoted the free lysine content in rice (Wu et al. 2016a; 
Yang et  al. 2016b; Yang et  al. 2018b; Zheng and Wang 
2014). The rice varieties with high free lysine content had 
no significant differences in yield and other main agro-
nomic traits except for plant height and grain color (Yang 
et  al. 2016b). The changed endosperm color of high-
lysine rice is mainly caused by activation of the jasmonic 
acid pathway by the high abundance of free lysine and 
subsequent enhanced serotonin biosynthesis (Yang et al. 
2018b).

Carotenoids
Regardless of the fact that more than 700 kinds of car-
otene have been found in nature, only α-carotene, 
β-carotene, lutein, lycopene, zeaxanthin, and astaxanthin 
have been shown to be beneficial for health (Federico and 
Schmidt 2016). Carotenoids are important phytonutri-
ents with antioxidant properties, and are used widely in 
foods and feedstuffs as supplements. In addition, carot-
enoids can also be used as antioxidants to prevent seed 
aging and promote seed vigor, leading to successful 
germination (Federico and Schmidt 2016). The synthe-
sis of carotenoids in seeds is closely related to the ABA 
biosynthesis pathway, the dominant pathway for seed 
dormancy.

Rice carotenoids biosynthesis is blocked in the first 
enzymatic step. Biofortification is an effective way to pro-
duce and accumulate carotenoids in rice grains. There-
fore, the major objective of golden rice (GR) development 
is to improve its carotenoids content. Driven by the Gt1 
promoter, the daffodils-originating PSY gene and Erwinia 
uredovora-originating CRTI gene were transformed into 
rice, thus generating rice grains with β-carotene accu-
mulation (Ye et al. 2000). Golden rice 2 (GR2) was devel-
oped by transferring the maize phytene synthase gene 
Zmpac1 and the carotene desaturase gene CrtI from soil 
bacteria Pantoea ananatis into japonica Kaybonnet rice. 
The content of β-carotene in the rice grain was 23 times 
higher than that in the first generation of GR (Paine et al. 
2005). Recently, astaxanthin biosynthesis was bioengi-
neered in the rice endosperm by introducing sZmPSY1, 
sPaCrtI, sCrBKT, and sHpBHY, four genes encoding 
the enzymes phytoene synthase, phytoene desaturase, 
β-carotene ketolase, and β-carotene hydroxylase, respec-
tively, thus generating multiple healthy rice germplasms, 
including β-carotene-enriched Golden Rice, Canthax-
anthin Rice, and Astaxanthin Rice (Zhu et  al. 2018). 
Another study indicated that co-expression of tHMG1, 
ZmPSY1, and PaCRTI could boost the carotenoids flux 
through the MVA pathway, thus increasing the accumu-
lation of carotenoids in the rice endosperm markedly 
(Tian et al. 2019b). The promotion of carotenoids in rice 
relies on insertions of target genes at random sites via 
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conventional transgenic methods; therefore, the marker 
gene still exists in the genome of transgenic rice. Alter-
natively, an expression cassette including two carotenoid 
biosynthesis genes were introduced using targeted inser-
tion at a safe site in the rice genome via CRISPR/Cas9, 
thus generating marker-free carotenoid-enriched rice 
(Dong et al. 2020).

Minerals, Taking Fe and Zn as Examples
At present, more than 90 Fe-related QTLs have been 
identified in the rice genome, among which 17 are stable 
and 25 harbor Fe-related genes nearby or within the QTL 
(Swamy et al. 2021). A common mechanism of transport-
ers and chelators mediates iron and zinc absorption and 
transport; therefore, most instances of increased iron 
content in rice are accompanied by a parallel increase in 
zinc (Kawakami and Bhullar 2018).

There are two sources of iron in seeds, absorption by 
the roots from soil solution, followed by direct transfer to 
seeds and reactivation from different tissues and organs 
during seed development (Ishimaru et  al. 2006, 2007a). 
Two Ferritin (FER) genes, OsFER1 and OsFER2, have 
been identified in rice (Stein et al. 2009). OsFER2 is more 
sensitive to external iron supply than OsFER1, implying 
its major role in rice FE chelation. Seed-specific overex-
pression of OsFER2 promotes the accumulation of iron 
and zinc in milled rice seeds by 2.1 and 1.37-fold, respec-
tively (Paul et al. 2012).

Nicotinamide (NA) is a ubiquitous metal-chelated 
non-protein amino acid in terrestrial plants with impor-
tant role in metal transport. Increasing the expression 
of the NA synthase gene (NAS) is a useful biofortifica-
tion method to promote the Fe and Zn contents of rice. 
There are three NAS genes in rice, OsNAS1, OsNAS2, 
and OsNAS3 (Nozoye et al. 2019). Knockout of OsNAS3 
reduced the iron content in rice flag leaves and seeds, 
while OsNAS3 overexpression had the opposite pheno-
type (Lee et  al. 2009). Yellow Stripe 1-Like 9 (encoded 
by OsYSL9) transports the iron-sodium/DMA complex 
from the endosperm to the embryo during seed develop-
ment. An OsYSL9 null mutant showed a decreased iron 
content in embryos, but an increased iron content in the 
endosperm (Senoura et al. 2017).

OsVIT1 and OsVIT2 are another two transporters that 
regulate the iron content in rice seeds. Knockout of the 
two genes promotes the amount of Fe/Zn in rice seeds, 
but decreases contents of these metals in rice leaves, sug-
gesting that OsVIT1 and OsVIT2 play important roles in 
controlling Fe/Zn translocation between source and sink 
organs (Zhang et al. 2012b).

ZIP transporters include zinc regulated transporters 
(ZRT) and iron regulated transporters (IRT). The rice 
ZIP gene family contains 16 members, including 14 ZRT 

genes and two IRT genes (Sasaki et al. 2015). Overexpres-
sion of OsIRT1 reduces plant height, tiller, and yield of 
rice, but increases the content of Fe and Zn in rice grains 
(Lee and An 2009). In addition, overexpression of OsZIPs, 
such as OsZIP4, OsZIP5, and OsZIP8, promotes the Zn 
content in roots, but reduces the content in shoots and 
grains (Ishimaru et al. 2007b; Lee et al. 2010a, b).

In general, three major strategies can be used to 
enhance the iron content in rice, including overexpres-
sion of NAS genes, endosperm-specific expression of 
FERs, and promoting source-to-endosperm Fe remobili-
zation (Kawakami and Bhullar 2021).

2‑Acetyl‑1‑Pyrroline (2‑AP)
2-AP is the main aroma substance in scented rice (Kovach 
et al. 2009; Bradbury et al. 2010). The Badh2 gene, encod-
ing betaine aldehyde dehydrogenase, inhibits the bio-
synthesis of 2-AP by exhausting γ-aminobutyraldehyde 
(AB-ald), a presumed 2AP precursor. The significant 
increase of 2-AP levels in fragrant rice varieties greatly 
improves the aroma of milled rice. The null badh2 alleles, 
with a protein frameshift mutation, enhance 2-AP bio-
synthesis and hence the aroma of rice (Chen et al. 2008).

Genes Regulating Other Seed Structures and Their 
Roles in Grain Qualities
The Embryo
The rice embryo, containing most of the genetic informa-
tion of rice, has the highest concentration of nutrients, 
including proteins, fatty acids, vitamins, and miner-
als. Giant embryo rice is a rice mutant whose embryo is 
about two to three times larger than the normal embryo. 
The phenotype of giant embryo rice is determined by the 
GIANT EMBRYO (GE) gene, encoding cytochrome P450 
protein CYP78A13. GE mutation leads to large embryo 
and small endosperm, while overexpression of GE had 
the opposite phenotype (Nagasawa et al. 2013).

In plants, GABA is mainly catalyzed by glutamate 
decarboxylase (GAD), producing decarboxylate gluta-
mate (Akama et al. 2009; Shelp et  al. 2012). However, 
the higher GABA content in the grains of developing 
giant embryo rice mainly comes from the upregula-
tion of the polyamine (PA) derivative pathway and the 
downregulation of GABA catabolism activity (Zhao 
et al. 2017). The C-terminal extension of OsGAD2 acts 
as a powerful self-inhibitory domain, and truncation of 
this domain caused the enzyme to function constitu-
tively and actively. Rice endosperm specific expression 
of OsGAD2ΔC enhanced the GABA content by about 
tenfold (Shelp et  al. 2012). In addition, the combina-
tion of seed-specific overexpression of truncated GAD 
with suppression of GABA-T, enhanced the GABA 
content strikingly (75–350  mg/100  g) in milled rice 
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(Shimajiri et  al. 2013). Recently, the coding region of 
CaMBD from the OsGAD3 gene was knocked out 
using CRISPR/Cas9 technology, thus improving rice 
GABA content by 7 times, accompanied by increased 
grain weight and protein content (Akama et al. 2020).

The Aleurone Layer
Brown rice is unpolished rice after shelling, which 
is composed of the endosperm, embryo, and rice 
bran. Compared with milled rice, brown rice con-
tains more macronutrients, vitamins, minerals, and 
other functional substances, such as GABA, is thus 
more beneficial to human health. The proportion of 
nutrients among various rice components are differ-
ent, thus optimization of rice structure is expected 
to change the nutritional quality of rice (Zheng and 
Wang 2014). Most nutrients of the seeds are stored in 
the endosperm. The triploid endosperm of rice devel-
ops from the fertilized polar nucleus. The endosperm 
at the filling stage consists of the aleurone layer, sub-
aleurone layer, and starch endosperm, from outside 
to inside, respectively (Wu et  al. 2016a). The cells of 
the aleurone layer of the mature endosperm are liv-
ing, whereas the cells in the starch endosperm are 
dead. As a transitional cell type, the subaleurone layer 
cells accumulate both starch and protein in the early 
stage of development and differentiate into the starch 
endosperm in the late stage of endosperm develop-
ment. The aleurone layer contains a large number of 
nutrient elements, such as proteins, vitamins, and 
minerals (Becraft and Yi 2011).

TA1, encoding a single-stranded DNA binding pro-
tein, OsmtSSB1 (located in mitochondria), is highly 
expressed in the aleurone layer, subaleurone layer and 
the caryopsis embryo, but not in the starch endosperm. 
The thickness of the aleurone layer of the mutant ta1 
was about twice as thick as that of the wild-type, and 
the nutritional quality was greatly improved. In the ta1 
mutant, the content of all nutrient elements increased 
(Li et al. 2021). In the mutant ta2-1, its grain transpar-
ency, 1000-grain weight, seed setting rate, total starch 
and AC were decreased; however, its nutritional com-
position of shelled grains increased, including the total 
protein, lipid, iron, zinc, calcium, dietary fiber, antioxi-
dants, phenols, and vitamins (Liu et al. 2018a).

Although brown rice is rich in nutrients, it is accepted 
by few consumers in the market because of its poor 
taste. How to balance taste and nutrition is an urgent 
problem that should be solved in the future. Currently, 
using germinated brown rice seems to be a reasonable 
alternative, which maintains the nutritional quality of 
rice but improves its edible quality (Cho and Lim 2016).

The Seed Coat
Brown rice or dehulled rice refers to rice with the hull 
removed, and further polishing generates milled white 
rice, which is generally sold in the market and consumed 
by people. However, brown rice contains most of the 
nutritional substances, including dietary fiber, vitamins, 
and phenolics, most of which are lost during the polish-
ing process. Therefore, brown rice, as the whole grain, 
contains more nutritional components. Moreover, brown 
rice with a red, purple, or black pericarp is more ben-
eficial to human health than traditional white pericarp 
rice because of the accumulation of more antioxidant 
compounds. Red rice pigmentation is controlled by the 
joint action of two genes Rc and Rd (Sweeney et al. 2006; 
Furukawa et  al. 2007). Rc, encoding a basic helix ring 
helix (bHLH) transcription factor, is responsible for the 
accumulation of the pigment, and Rd/OsDFR, encoding 
a dihydroflavonol 4-reductase, enhances the accumula-
tion of procyanidin in the brown grain pericarp (Sweeney 
et  al. 2006; Furukawa et  al. 2007). Rc and Rd together 
cause the peel to be red and most cultivated rice varie-
ties that produce white grains have a 14  bp frameshift 
deletion of the seventh exon of Rc (Furukawa et al. 2007). 
Recently, the recessive Rc allele with 14 bp deletion was 
functionally restored to an in-frame mutation via the 
CRISPR/Cas9 method, which successfully transformed 
three excellent white grain varieties into red grains, thus 
remarkably promoting the content of procyanidin and 
anthocyanin (Zhu et al. 2019).

The black rice pigment is also regulated by the joint 
action of two genes, Pb and Pp (Hu et  al. 1996; Wang 
and Shu 2007). The Pb locus is composed of two genes, 
encoding a MYC transcription factor and a bHLH16 
transcription factor, which are involved in the synthe-
sis of anthocyanin and procyanidins, respectively. The 
expression of Pb seems to be the cause of pigment accu-
mulation in the pericarp of brown grains, whereas the 
expression of Pp increases the content of pigment, result-
ing in purple grains. The copy number of the Pp gene cor-
relates with the intensity of purple pigmentation. In the 
absence of Pp, Pb plants produce brown grains, while Pp 
plants without Pb have white grains (Tanaka et al. 2008; 
Rahman et al. 2013; Mbanjo et al. 2020).

The gene corresponding to black rice is Kala4/OsB2, 
encoding a bHLH transcription factor. The structural 
rearrangement of its promoter region leads to its ectopic 
expression, resulting in a black pericarp. OsB2 regulates a 
number of genes encoding anthocyanin synthesis related 
enzymes, including F3H, DFR, and ANS (Oikawa et  al. 
2015).

Recently, a C-S-A gene model of rice husk pigmen-
tation was proposed. C1 and A1 jointly determine the 
color change, while S1 diversifies the pigment tissue. C1 



Page 21 of 27Li et al. Rice           (2022) 15:18 	

encodes an R2R3-MYB transcription factor and acts as 
a color producing gene. S1 encodes a bHLH protein that 
functions in a tissue-specific manner. C1 interacts with 
S1 and activates the expression of A1, which encodes 
dihydroflavonol reductase, thus generating purple rice 
pigment. The involvement of functional A1 leads to high 
accumulation of cyano 3-o-glucoside, while A1 mutation 
results in a brown pigment. Instead of C1, rice pigment 
color is produced by the synergistic regulation of S1 and 
other MYB transcription factors (Sun et al. 2018b).

More recently, a study showed that OsTTG1, the WD40 
gene in rice, is an important regulator of anthocya-
nin biosynthesis. The OsTTG1 protein is located in the 
nucleus and directly interacts with Kala4, OsC1, OsDFR, 
and Rc, which are determinants of pigments or antho-
cyanin biosynthesis. Knockout of OsTTG1 reduced the 
anthocyanin content of the mutant grain to only 0.15% 
of that of wild-type plants, suggesting that OsTTG1 is 
a vital regulator of rice anthocyanin biosynthesis (Yang 
et al. 2021c).

Conclusion and Perspectives
Rice grain quality, a typical quantitative trait, is influ-
enced by complex genetic regulation and environmental 
factors. Rice quality generally includes milling quality, 
appearance quality, nutritional quality, and eating and 
cooking quality. The structure and composition of the 
rice seed are correlate closely with different aspects of 
rice quality. For example, grain size not only affects rice 
AQ, but also influences rice MQ and ECQ. Moreover, the 
rice endosperm, as the edible part of rice, is composed 
of starch, protein, lipids, and other micronutrients. The 
quantity and quality of these component are major con-
tributors to rice ECQ, AQ, and NQ. Therefore, modify-
ing and optimizing the structure and composition of rice 
seed are crucial to promoting its quality. Considering that 
rice growth and development are controlled by numerous 
genes and complicated regulation networks, the cloning 
of key genes involved in regulating specific grain trait and 
the dissection their molecular mechanisms will provide 
valuable gene resources and essential information for 
breeding high quality rice. In the present review, we sum-
marized the cloned genes and their molecular functions 
that determine each part of rice seeds and their corre-
sponding roles in regulating rice quality. In particular, the 
genes involved in controlling seed size and endosperm 
components are highlighted, which are also the two 
major determinants of rice quality.

Although impressive progress has been made in rice 
quality research, few cloned genes are suitable for use 
in high quality rice breeding programs. In addition, a 
huge gap still exists in our understanding of the regula-
tory network of rice grain quality. Therefore, a number 

of urgent problems remain to be solved. First, there is 
a contradiction between grain yield and rice quality; 
therefore, how to improve rice quality without sacrific-
ing rice yield is an important issue. Second, it is a great 
challenge to explore the upstream and downstream 
components of known rice quality regulators, as well 
as the crosstalk between various regulation pathways. 
Third, the evaluation of the effects of most cloned rice 
quality genes or their elite alleles are limited and frag-
mented, being based on the analysis in a only a few rice 
varieties, especially some so-called model varieties. The 
performance of quality traits are genetic and environ-
ment-dependent, which often causes the silencing of 
some reported high quality genes in breeding practice. 
Fourth, some rice quality determinants often play con-
tradictory roles in the context of different quality traits. 
For example, the protein content correlates positively 
with rice NQ. However, the higher the protein con-
tent, the more protein bodies accumulate among starch 
grains, resulting in increased chalkiness and the deteri-
oration of ECQ. For lipids, the oxidation of unsaturated 
fatty acids helps to improve the flavor of rice. How-
ever, it is not conducive to long-term storage because 
the hydrolysis and oxidation of lipids will worsen the 
appearance and taste of rice. Finally, we lack universal 
and unified rice quality evaluation standards. Rice qual-
ity is relative and context-specific; thus the evaluation 
of rice quality depends on their application mode and 
consumer background, including region, age, or even 
religion.

Although rice quality research remains challenging, 
certain strategies should be employed in future stud-
ies. Most importantly, more genes encoding proteins 
with specific roles in the control of rice quality should 
be cloned, sequenced, and functionally analyzed, thus 
enlarging the high quality gene pool. In addition, pow-
erful and accurate technologies can be used in basic 
research and in breeding practices of high quality rice, 
such as genome-wide selection, enhanced selection of 
major genes for grain quality, and precise gene knock-
in or knock-out. For example, based on re-sequencing 
data of 200 japonica rice varieties in central China, Xiao 
et  al. (2021) revealed a number of superior alleles for 
rice quality and rice blast resistance by using genome-
wide association mapping and selection approach. 
Next, the alleles related to blast-resistance and excel-
lent rice ECQ, such as Wxmp allele, corresponding to 
low amylose content, were successfully introduced into 
two high-yield rice cultivars. Hence, two elite rice lines, 
XY99 and JXY1, with both ECQ and blast resistance 
improved were efficiently developed (Xiao et al. 2021). 
In addition, the corresponding breeding character tar-
gets, as well as universal and objective rice quality 
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evaluation standards according to regional or popula-
tion preferences of consumers, should be established 
as soon as possible, which will help to accelerate high 
quality rice research.
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