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Protein Elicitor EsxA Induces Resistance 
to Seedling Blight and PR Genes Differential 
Transcription in Rice
Wen Qing Yu1,2,3  , Peng Li2, Feng Chao Yan2, Gui Ping Zheng3, Wen Zhi Liu1,2*, Wen Xi Lin1, Yi Wang1 and 
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Abstract 

Protein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from 
the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition 
to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. 
While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response 
and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling 
blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were 
evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which 
was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds 
and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots 
of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con 
seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, 
and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con 
seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome 
analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, 
respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-
regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many 
disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the 
transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, includ-
ing the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein 
elicitor to control plant diseases.
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Background
Elicitors can induce plant resistance via signal recogni-
tion, signal transduction, and defense gene regulation. 
Protein elicitors are the most important type of elicitors 
that activate host plant defense responses (Shen et  al. 
2019) to enhance disease resistance (Ruiz et  al. 2018; 
Mao et  al. 2010; Wang et  al. 2012; Qiu et  al. 2009) and 
insect resistance (Li et  al. 2020). They also stimulate 
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plant metabolism to regulate plant growth (Darwati 
et  al. 2018). Recent research on the mechanism under-
lying elicitor-induced plant stress resistance revealed 
that pathogenesis-related (PR) proteins may be elici-
tor receptors that directly or indirectly bind to elicitors, 
after which they activate a series of downstream defense-
related signal transduction pathways, and trigger plant 
broad-spectrum induced systemic resistance (ISR) to dis-
eases (Liu et al. 2018; Li et al. 2019).

Early secreted antigenic target of 6  kDa (ESAT-6) is 
encoded by the EsxA gene, which belongs to the WXG 
super family. This protein, which was identified in animal 
pathogens (Pollock and Andersen 1997; Schulthess et al. 
2012; Ma et  al. 2015), functions in the Type VII secre-
tion system. It has been studied as a virulence factor for 
bacterial pathogens, and its importance for pathogenic-
ity has been confirmed (Berthet et al. 1998; Ulrichs et al. 
1998). However, EsxA is not a simple virulence factor. In 
addition to being important for the pathogenicity of ani-
mal pathogens, it can also induce an immune response in 
animals (Zhou et al. 2013).

In an earlier study, we cloned an EsxA gene from the 
plant growth-promoting rhizobacterium Paenibacillus 
terrae NK3-4 and expressed it in Pichia pastoris, with 
the secreted protein inducing a hypersensitive response 
(HR) and reactive oxygen species (ROS) burst in leaves 
as well as enhanced rice plant growth (Yu et  al. 2021). 
To further assess whether EsxA can induce plant disease 
resistance, we used various methods to treat rice with 
EsxA to evaluate its effect on rice resistance to seedling 

blight. Transcriptome sequencing and quantitative real-
time PCR (qPCR) analyses were combined to investigate 
the transcription of rice genes, including PR genes, to 
clarify the mechanism underlying EsxA-induced plant 
disease resistance at the transcriptional level. The result-
ing data may form the basis of future research on the role 
of receptor proteins in cells during interactions between 
EsxA and plants.

Results
EsxA Induction Effect on Rice Seedling Blight Resistance
EsxA Induction Effect After the Seed‑Dipping Treatment
At 4  days after the inoculation with the F. oxysporum 
spore suspension, only 25.0% of the Con seeds (i.e., not 
treated with EsxA) germinated, whereas 95.0% of the 
EsxA-treated seeds germinated, with a germination rate 
2.8-times higher than that of the Con seeds (F = 1622.49, 
P < 0.001) (Fig.  1A). The bud length and the root length 
of the EsxA-treated rice were 2.4-times (F = 4800.50, 
P < 0.001) (Fig.  1B; D compared with E) and 15.9-times 
(F = 1095.200, P < 0.001) (Fig.  1 C; D compared with E) 
greater than the corresponding lengths of the Con rice, 
respectively. After another 4-day incubation, no newly 
germinated seed in both treatment, while the EsxA rice 
bud length was longer than Con (F = 88.506, P = 0.001) 
(Fig. 1F; H compared with I). while the Con rice exhib-
ited obvious seedling blight symptoms, with retarded 
bud and root growth and yellowish-brown decaying roots 
(Fig.  1 H), because of the roots roted, the root length 
shorter than that before 4  days (Fig.  1, C comared with 

Fig. 1  Effects of protein elicitor EsxA on the germination and growth of rice under seedling blight (Fusarium oxysporum) stress (seed-dipping 
treatment). Bar diagrams A, B, C, D and E present the results at 4 days after rice was challenged with Fusarium oxysporum; F, G, H and I represent 
8 days after rice was challenged with F. oxysporum, respectively, with “Con” representing the control treatment (without EsxA) and “EsxA” 
representing the EsxA treatment (**P < 0.01)
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G of Con; H compared with D). In contrast, the roots 
of EsxA-treated rice continued to grow, and remained 
white (Fig.  1I), meanwhile, the root length of EsxA rice 
was longer than that of Con rice (F = 821.884, P < 0.001) 
(Fig.  1G; H compared with I). Thus, the seed-dipping 
EsxA treatment promoted the growth of rice seedlings 
infected by F. oxysporum, with minimal disease symp-
toms. At 4th day after infected by F. oxysporum, the 
induction efficiency for the germination rate, bud length, 

and root length was 280.7%, 238.5%, and 493.3%, respec-
tively. And the induction efficiency for the bud length 
and root length was 50.9% and 2879.6% at 8 days infected 
by F. oxysporum, respectively.

EsxA Induction Effect After the Seedling‑Dipping Treatment
After a 48-h treatment with EsxA (100  μg/mL) and a 
5-day incubation following an inoculation with F. oxyspo-
rum, the bud length and root length of the EsxA-treated 
rice were respectively 32.1% (F = 17.344, P = 0.014) and 
1.8-times (F = 24.324, P = 0.008) greater than the corre-
sponding lengths of the Con rice (Fig.  2A; compared B 
with C). The induction efficiency for the bud length and 
root length was 32.1% and 179.8%, respectively. These 
results indicated that the seedling-dipping treatment 
with EsxA promoted the growth of rice seedlings infected 
with F. oxysporum.

EsxA Induction Effect After the Seedling‑Spraying Treatment
At 48 h after the EsxA treatment, the plant height, num-
ber of roots, and number of white roots were respec-
tively 17.5% (F = 9.491, P = 0.015), 2.0-times (F = 192.753, 
P < 0.001), and 58.0% (F = 68.016, P < 0.001) greater 
for the EsxA-treated rice than for the Con rice. The 
EsxA treatment had no significant effect on root length 
(Fig. 3A; C compared with D). At 7 days after the inoc-
ulation with F. oxysporum, the plant height, number of 
roots, and number of white roots were respectively 23.2% 
(F = 48.790, P < 0.001), 1.74-times (F = 38.018, P < 0.001), 

Fig. 2  Effects of protein elicitor EsxA on the plant and root 
length of rice under seedling blight (Fusarium oxysporum) stress 
(seedling-dipping treatment). Bar diagram A presents the results 
at 5 days after rice was challenged with Fusarium oxysporum, with 
“Con” representing the control treatment (without EsxA) and “EsxA” 
representing the EsxA treatment; B and C represent “Con” and “EsxA” 
respectively (*P < 0.05, **P < 0.01))

Fig. 3  Effects of protein elicitor EsxA on the growth and performances of rice udner seedling blight (Fusarium oxysporum) stress (seedling-spraying 
treatment, 7 days). A, C, and D: 48 h after the EsxA treatment; B, E, and F: 7 days after the inoculation with Fusarium oxysporum, with C and D 
representing control (Con) seedlings (without EsxA) and E and F representing seedlings sprayed with EsxA. The number of roots was determined 
based on roots longer than 1 cm; the number of white roots includes roots shorter than 1 cm (*P < 0.05, **P < 0.01)
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and 7.42-times (F = 63.888, P < 0.001) greater for the 
EsxA-treated rice than for the Con rice (Fig. 3B; E com-
pared with F). The results implied that the EsxA treat-
ment alleviated the adverse effects of F. oxysporum on 
rice growth.

At 7 days after the inoculation with F. oxysporum, the 
Con roots were yellow and the number of white roots 
decreased by 83.1% compared with that before the inoc-
ulation (F = 214.554, P < 0.001). In contrast, there was 
no significant decrease in the number of white roots 
for the EsxA-treated rice inoculated with F. oxysporum 
(F = 0.966, P = 0.354) (Fig. 3). These results indicated that 
the EsxA spray-treatment promoted rice seedling growth 
and development, while also significantly decreasing the 
detrimental effects of F. oxysporum on seedling growth.

At 14 days after the inoculation with F. oxysporum, the 
seedling blight incidence of EsxA-treated rice was sig-
nificantly lower than that of Con rice. More specifically, 
the incidence of sheath rot and stem rot among the Con 
plants was 10.5% and 24.0%, respectively, for a seedling 
blight incidence of 34.5%. The incidence of sheath rot 
and stem rot among the EsxA-treated plants was 8.1% 
and 9.4%, respectively, for a seedling blight incidence of 
17.5%. The EsxA treatment significantly decreased the 
incidence of stem rot (F = 5.400, P = 0.032) and the over-
all seedling blight incidence (F = 8.455, P = 0.009). The 
EsxA induction efficiency on rice sheath rot and stem rot 
resistance was 13.8% and 60.9%, respectively (Fig.  4A). 
The EsxA treatment decreased the incidence and sever-
ity of rice seedling blight (Fig.  4, B compared with D). 

Additionally, the roots of EsxA-treated rice grew sig-
nificantly better than the Con roots, with whiter roots, 
longer roots, and more roots (Fig.  4, C compared with 
E). Furthermore, the Con roots produced a strong odor 
similar to rotting pear, which is a hallmark characteristic 
of seedling blight, whereas the roots of the EsxA-treated 
rice were odorless.

Effects of EsxA on the Rice Transcriptome
Effects of EsxA on Gene Transcription in Rice
The rice transcriptome was sequenced at the two-leaf 
stage. Specifically, the following samples were analyzed: 
rice before the EsxA treatment (Con0), rice at 48  h 
after the EsxA treatment (E48), and control rice (with-
out EsxA treatment) at 48 h (Con48). The RNA-seq raw 
data of nine samples (three biological replicates in each 
treatment) were submitted to NCBI bioSample database 
(accessions: SAMN19404905–SAMN19404913). A total 
of 36,844 genes and 43,397 transcripts were detected in 
the rice transcriptome library, including 14,029 new tran-
scripts. A comparison between Con0 and E48 revealed 
1376 differentially transcribed genes (i.e., transcription 
levels differed by more than 2 times, the same belows), of 
which 1137 were up-regulated and 239 were down-reg-
ulated in the EsxA-treated rice (Fig.  5A). A comparison 
between E48 and Con48 detected 771 differentially tran-
scribed genes, of which 611 were up-regulated and 160 
were down-regulated in the EsxA-treated rice (Fig.  5B). 
Thus, EsxA modulated the transcription of many rice 

Fig. 4  Effects of protein elicitor EsxA on the incidence of rice seedling blight (seedling-spraying treatment, 14 days). A representing the incidence 
of stem rot and sheath rot respectively, B and C: control (Con) seedlings (sprayed with bovine serum albumin), D and E: EsxA-treated plants, with B 
and D representing the plants exhibiting stem rot (white arrows) and sheath rot (red arrows) symptoms; C and E representing the plants exhibiting 
sheath rot symptoms (*P < 0.05; NS: not significant)
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genes, with substantially more up-regulated genes than 
down-regulated genes.

The principal componet analysis of rice gene tran-
scription indicated that E48 was displaced along the PC1 

axes when compared with Con0 and Con48 (Fig. 5C, D). 
Additionally, Con48 and E48 were displaced along the 
PC2 axis when compared with Con0. The three EsxA 
treatment groups formed three spatially clusters. These 
results suggested that rice gene transcription induced by 
EsxA.

Functional Analysis of EsxA‑induced Differentially 
Transcribed Genes
The gene ontology (GO) annotations indicated that EsxA 
induced the differential transcription (compared with 
Con0) of genes in 2,612 functional groups. One of the 
most significantly enriched functional groups was GO: 
2000022 [regulation of jasmonic acid (JA)-mediated sign-
aling pathway]. The three enriched functional groups 
with the most genes were GO: 0071944 (cell periphery), 
GO: 0005886 (plasma membrane), and GO: 0006950 
(response to stress) (Fig.  6A). The comparison with 
Con48 indicated that the EsxA treatment induced the dif-
ferential transcription of genes in 2100 functional groups. 
The most significantly enriched functional groups were 
GO: 0031408 (oxylipin biosynthetic process) and GO: 
0031407 (oxylipin metabolic process). The enriched func-
tional groups with the most differentially transcribed 
genes were GO: 0043167 (ion binding), GO: 0046872 
(metal ion binding), and GO: 0043169 (cation binding) 
(Fig.  6B). Genes in 11 functional groups were identified 
as differentially transcribed in both the E48 versus Con0 
and E48 versus Con48 comparisons (Fig. 6A, B, classifica-
tion numbers in red).

Fig. 5  Volcano map (A, B) and principal coordinate analysis (C, D) of 
protein elicitor EsxA-induced rice gene transcription in the compared 
sample groups. E48: EsxA treatment after 48 h of EsxA treating rice; 
Con0: control without EsxA at 0 h of EsxA treating rice; Con48: control 
without EsxA at 48 h after EsxA treating rice. Principal coordinate was 
conducted using Biological replicates (C) and groupmerge (D)

Fig. 6  Scatter diagram of GO classification of protein elicitor EsxA-induced differentially transcribed genes in rice
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Functional Analysis of EsxA‑induced Up‑regulated Genes
The GO annotations revealed that EsxA up-regulated 
the transcription of genes in 2244 functional groups 
(E48 vs. Con0). One of the most significantly enriched 
functional groups was GO: 2000022 (regulation of JA-
mediated signaling pathway). The four enriched func-
tional groups with the most genes were GO: 0140096 
(catalytic activity, acting on a protein), GO: 0005886 
(plasma membrane), GO: 0071944 (cell periphery), and 
GO: 0006950 (response to stress) (Fig.  7A). Compared 
with Con48, the EsxA treatment up-regulated the tran-
scription of genes in 1807 functional groups. The most 
significantly enriched functional group was GO: 1901002 
(positive regulation of response to salt stress), followed 
by GO: 0031408 (oxylipin biosynthetic process) and GO: 
0031407 (oxylipin metabolic process). The three enriched 
functional groups with the most genes were GO: 0050896 
(response to stimulus), GO: 0071944 (cell periphery), and 
GO: 0005886 (plasma membrane) (Fig. 7B). Furthermore, 
genes in 12 functional groups were identified as up-regu-
lated in both the E48 versus Con0 and E48 versus Con48 
comparisons (Fig. 7A, B; classification numbers in red).

The genes with EsxA-induced up-regulated tran-
scription levels (E48 vs. Con48) were associated with 
the cell periphery, plasma membrane, transcription 
regulator activity, calmodulin binding, signal transduc-
tion, defense responses, hormone responses [including 
abscisic acid (ABA) and JA responses], chitin response, 
ethanol response, response to oxygen-containing com-
pounds, ABA-activated signaling pathways, JA-mediated 

signaling pathway regulation, diterpene biosynthesis pro-
cess, protein phosphorylation, cell communication, and 
chitinase activity. These functions may contribute to the 
disease resistance of rice.

Disease Resistance‑related Genes with EsxA‑induced 
Up‑regulated Transcription Levels
The genes with EsxA-induced up-regulated transcrip-
tion levels included genes related to disease resistance. 
At 48 h after the EsxA treatment, the transcription lev-
els of genes encoding mitogen-activated protein kinase 2 
(MAPK2), NPK1-related PK2, WRKYs, TIFYs, chitinases, 
PR10, XB15, PODS, PAL, ERF, and MYBS were signifi-
cantly up-regulated (E48 vs. Con0). The transcription lev-
els of these genes were also detected as up-regulated in 
the E48 versus Con48 comparison, but the up-regulated 
transcription level was less than that in the E48 versus 
Con0 comparison. Additionally, the transcription levels 
of 12 genes were up-regulated over time in rice that was 
not treated with EsxA (Con48 vs. Con0); however, the 
extent of the up-regulation was less than that revealed 
by the E48 versus Con0 comparison. The PR genes with 
EsxA-induced up-regulated transcription levels encode 
the following disease resistance-related proteins: NPK1-
related PK, WRKY71, TIFY11A, PR8, chitinase 1, chi-
tinase 3, chitinase 8, root-specific Oryza sativa PR10, 
root-specific rice PR10, root-specific OsPR10a, POD22, 
POD62, POD22.3, and MYB2 (E48 compared with Con0 
and Con48). These results indicated that a few of these 
genes (12) were up-regulated over time even without 

Fig. 7  Scatter diagram of GO classification of protein elicitor EsxA-induced up-regulated genes in rice
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EsxA induction (Con48 vs. Con0), while more genes (51) 
were up-regulated over time only with EsxA induction 
(E48 vs. Con0), which also up-regulated at the same point 
in time, compared with control without EsxA treatment 
(E48 vs. Con48), but no one had higher fold change than 
that of E48 versus Con0 (Table 1).

Verification of Up‑regulated Transcription by qPCR
The qPCR data for the genes encoding PR2, PR8, 
WRKY45, POD22, PAL, NPK1-related PK, AOS, NPR1-
like gene 4, and ethylene response factor 104 (ERF104) 
were consistent with the transcriptome sequencing 
results (Fig. 8).

Discussion
Bases on our studies on EsxA, we believe it a protein 
elicitor that can trigger ISR in plant, including rice seed-
ling blight and rice blast (Yu et  al. 2021a). While other 
researchers suggest that EsxA can induce immunogenic 
activity of animal to bacterial diseases (Zhou et al. 2013; 
Hoang et al. 2013; Yi et al. 2021). Even though there may 
be differences of diseases that caused by bacterial and 
fungal pathogens in plant or animal, but the animal’s 
immunity is similar to plant systemic resistance, they 
both enhancing organism resistance to some diseases. 
And we believe that EsxA can trigger ISR in rice based 
on the transcriptome sequencing results and our prevous 
study (Yu et al. 2021a).

Plants stimulated by protein elicitors will produce a 
series of defense responses (e.g., oxidative burst, HR, and 
nitric oxide accumulation) (Gabriel et  al. 2015; Foissner 
2000), which subsequently activate the disease resistance-
related metabolic activities involving the JA, ethylene, 
and aABA signaling pathways. Moreover, there is “cross-
talk” among the various signaling pathways. For example, 
the elicitor may interact with JA esters, ethylene signaling 
pathways, and ROS. This cross-talk integrates multiple 
signaling pathways and transcription factors (Cheng et al. 
2018). The above-mentioned signaling components affect 
the elicitor signaling network at the transcriptional and 
metabolic levels to influence plant secondary metabo-
lism (Zhao et al. 2005; Cheplick et al. 2018). The affected 
secondary metabolites will further regulate plant growth 
and stress resistance. Most researchs indicates that the 
elicitor induced resistance is mostly systemic resistance 
(Wang et al. 2021).

On the basis of the transcriptome sequencing data 
and the results of our previous studies (Yu et al. 2021b), 
we speculate that EsxA helps plants establish the first 
defense response by inducing the ROS burst and HR and 
by activating the transcription of cell structure-related 
genes to strengthen the cell wall (e.g., increased PAL lev-
els) (Table 1, Fig. 8). Moreover, EsxA also interacts with 

membrane receptors, which then activate transcription 
factors, including WRKYs. These WRKY transcription 
factors then interact with NPK1-related PK to increase 
the transcription of downstream defense genes (e.g., PR1, 
PR2, PR8, and POD genes) (Table 1, Fig. 8) and protein 
phosphorylation, resulting in the formation of second 
messengers. Among which, POD activity was confirmed 
increased in EsxA treated rice plant (Yu et al. 2021b). The 
amplified signal will induce the ROS burst in other cells 
via signal transduction pathways. These changes can fur-
ther regulate salicylic acid-mediated systemic acquired 
resistance or JA/C2H4-mediated induced systemic resist-
ance, which ultimately triggers disease resistance-related 
responses.

Genes encoding EsxA have been commonly detected 
in the genomes of plant growth-promoting rhizobacteria 
belonging to the genus Paenibacillus, including P. terrae 
NK3-4 (Yu 2019). However, EsxA in Paenibacillus spe-
cies has not been functionally characterized. The results 
described herein indicate that EsxA regulates the tran-
scription of plant PR genes via molecular interactions to 
initiate defense-related metabolism, leading to disease 
resistance. To clarify the mechanism underlying EsxA-
induced plant disease resistance and lay the foundation 
for using EsxA to protect plants from diseases, future 
studies will be performed to confirmation our hypoth-
esis as the following. First, the molecular interactions 
between EsxA and host plants at the level of transcription 
and the post-transcriptional regulation of downstream 
genes encoding proteins (e.g., PR proteins) that interact 
with transcription factors should be explored, these inter-
actions increase plant disease resistance through signal 
transduction pathways that regulate salicylic acid and/
or JA defense-related metabolism. Second, EsxA recep-
tor proteins will need to be identified and the binding of 
EsxA to the receptor protein (or receptor-like protein) 
should be confirmed in protein interaction analyses. The 
binding of EsxA to the receptor regulates PR gene tran-
scription or downstream signal transduction to enhance 
plant disease resistance. Third, an esxA-transgenic rice 
will be constructed and compared with wild varieties to 
detect the difference of disease resistance, which will also 
provide materials for rice resistance breeding.

Conclusions
The EsxA treatment induced seed germination, increased 
seedling vigor, promoted seedling growth, and enhanced 
seedling blight resistance in response to the F. oxyspo-
rum infection. The transcriptome analysis combined with 
qPCR proved that EsxA induced the differential tran-
scription of rice genes, including the up-regulated tran-
scription of a series of PR genes. These findings may be 
relevant for the use of EsxA as a protein elicitor to control 
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Table 1  Information regarding disease resistance-related genes with EsxA-induced up-regulated transcription levels

Protein name Description (gene ID) Log2(Fold Chang) (P < 0.05) References

E48 
versus 
Con0

E48 
versus 
Con48

Con48 
versus 
Con0

MAPK Multiple stress responsive MAP kinase 2 
(Os03g0285800)

3.46 2.68 – Song and Goodman (2002), Hur and Kim (2014)

MAPKKK MAPK kinase kinase 6 (Os01g0699500) 3.87 3.64 – Ma et al. (2017, 2021)

NPK1-related PK NPK1-related protein kinase (Os01g0699600) 5.59 3.56 2.03 Savatin et al. (2014)

ERF Ethylene response factor (ERF) 104 
(Os08g0474000)

5.79 4.35 – Pré et al. (2008), Tripathi et al. 2020)

ERF130 (Os05g0497200) 2.86 1.85 –

ERF91 (Os02g0654700) 2.91 1.99 –

WRKY WRKY1 (Os01g0246700) 3.16 1.98 – Yang et al. (2009), Molan and El-Komy (2010)

WRKY21 (Os01g0821600) 4.73 3.21 – Zhao et al. (2019) Zhou et al. (2008)

WRKY24 (Os01g0826400) 4.39 2.89 – Yokotani et al. (2018)

WRKY28 (Os06g0649000 4.82 3.72 – Meng and Wise (2012), Chujo et al. (2013)

WRKY45 (Os05g0322900) 3.52 2.68 – Shimono et al. (2007), Inoue et al. (2013)

WRKY53 (Os05g0343400) 2.04 1.29 – Miao and Zentgraf. (2007), Hu et al. (2012)

WRKY62 (Os09g0417800) 3.04 2.27 – Liu et al. (2016)

WRKY70 (Os05g0474800) 5.10 3.49 – Hu et al. (2012), Li et al. (2004), Ülker et al. (2007), 
Knoth et al. (2007)

WRKY71 (Os02g0181300) 3.85 1.90 1.95 Liu et al. (2007)

WRKY79 (Os03g0335200) 6.08 4.05 – Fu et al. (2017)

TIFY TIFY11A (Os03g0180800) 4.57 2.39 2.18 Ye (2011)

TIFY11B (Os03g0181100) 3.70 2.74 – Ye (2011)

TIFY11E (Os10g0391400) 4.68 4.21 – Ye et al. (2009)

Chitinase PR8, Chitinase 1 (Os10g0416500) 4.12 2.49 1.62 Schlumbaum et al. (1986), Mourão Filho et al. 
(2014)Chitinase 3 (Os06g0726100) 3.97 1.52 2.44

Chitinase 8 (Os10g0542900) 3.50 1.23 2.26

Chib3a (Os01g0660200) 3.21 2.28 –

Chitinase 11 (Os03g0132900) 2.88 1.97 –

Glucanase Beta-1, 3-glucanase, pathogenesis-related protein 
2 (Os01g0940700)

3.71 2.90 – Gerhard and Frederick (1999)

beta-1, 3-glucanase 10 (Os01g0713200) 3.58 2.50 –

beta-1, 3-glucanase 11 (Os07g0539100) 2.44 2.15 –

PR10 Root-specific Oryza sativa PR10, PR10a 
(Os12g0555000)

5.24 3.17 2.08 Takeuchi et al. (2016), Pulla et al. (2010)

Jasmonate inducible PR10 (Os03g0300400) 2.59 2.00 –

PR10B (Os12g0555200) 4.10 3.00 –

XB15 XA21 binding protein15 (Os03g0821300) 2.27 1.88 – Park et al. (2008)

AOS Allene oxide synthase 1 (Os03g0767000) 2.39 1.90 – Gnanaprakash et al. (2013)

Allene oxide synthase 2 (Os03g0225900) 5.59 2.93 – Pajerowska-Mukhtar et al. (2009)

Elicitor 5 E3 ubiquitin-protein ligase EL5 (Elicitor 5) 
(Os02g0559800)

4.84 3.20 – You et al. (2016), Kumar et al. (2016)

Elicitor 5 (Os02g0560200) 4.79 3.20 –

Elicitor 5 (Os02g0560600) 4.77 3.17 –

Elicitor 5 (Os02g0561000) 4.80 3.18 –

Elicitor 5 (Os02g0561400) 4.79 3.17 –

Elicitor 5 (Os02g0561800) 4.82 3.21 –

PAL Phenylalanine ammonia lyase (Os05g0427400) 3.33 2.95 – Tonnessen et al. (2015), Solekha et al. (2020)
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plant diseases and for the genetic improvement of rice to 
enhance disease resistance.

Materials and Methods
Materials
The Fusarium oxysporum strain used in this study was 
preserved in our laboratory. The cultivated japonica rice 
model species Oryza sativa L. was purchased from Kyoto 
Co., Ltd. Japan. It was used as a typical japonica rice 
genome donor in the International Rice Genome Pro-
ject, and its genome has been sequenced (Goff 2002). The 
EsxA exogenously expressed and secreted by P. pastoris 
cells was dissolved in 50 mM PBS and stored at − 80 °C.

Induction of Rice Seedling Blight Resistance by EsxA
Seed‑Dipping Treatment
Sterile filter paper was added to six Petri dishes. Rice 
seeds were soaked in sterile water for 5  days at room 
temperature and then placed on the filter paper, with 
100 seeds per Petri dish. Next, 10  mL EsxA solu-
tion (10  μg/mL; prepared in 50  mM PBS, pH 7.5) was 
added to three Petri dishes, which were then gently 
shaken to ensure all seeds were fully soaked (marked as 
EsxA treatment). As the control, a bovine serum albu-
min (BSA) solution was added to the other three Petri 
dishes (marked as Con). All samples were incubated at 
28  °C for 24  h. Three biological replicate (three Petri 
dishes) were set for both of the Con and EsxA treat-
ments, respectively.

When the radicles grew out (approximately 1 cm long), 
5  mL F. oxysporum spore suspension (1 × 106/mL) was 
added to all six Petri dishes, which were rotated to ensure 
all radicles were inoculated with spores. seedlings were 
incubated at 28 °C for 48 h and then at room temperature 
with a 12-h light:12-h dark cycle.

At 4 and 8 days after the inoculation with F. oxyspo-
rum, the germination rate was determined by count-
ing the number of sprouted seeds in every Petri dishes. 
Additionally, the representive seedlings were photo-
graphed and the bud length and root length of random 
10 seedlings in every Petri dishes were measured. Aver-
age germination rate, bud length or root length in each 
Petri dish was as one of the three biological replicats 
for both of the Con and EsxA treatments, respecitively. 
The induction efficiency was calculated using Eq. 1.

Table 1  (continued)

Protein name Description (gene ID) Log2(Fold Chang) (P < 0.05) References

E48 
versus 
Con0

E48 
versus 
Con48

Con48 
versus 
Con0

POD Class III peroxidase (POD) 19 (Os01g0787000) 3.96 2.14 1.81 Gao et al. (2010), Wally and Punja. (2010), 
Takashima et al. (2013)

Class III POD22 (Os01g0963000) 2.54 1.86 –

POD22.3 (Os07g0677200) 3.41 1.61 1.79

Class III POD59 2.12 1.39 –

Class III POD62 (Os04g0688500) 4.20 1.51 2.7

Class III POD81 (Os06g0522300) 4.12 1.96 –

Class III POD83 (Os06g0521500) 4.49 2.24 –

Myb Myb transcription factor2 (Myb2) 
(Os03g0315400)

3.73 2.09 1.64 Qi (2015)

Myb4 paralog (Os02g0624300) 6.95 4.10 – Baldoni et al. (2013)

Myb4, Myb8 (Os04g0517100) 5.21 3.39 1.82

NPR NPR1-like gene 4 (Os01g0837000) 2.04 2.01 – Liu et al. (2005)

The italic font represents the genes used in qPCR validation in Fig. 8. “ − ” represents P > 0.05
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Fig. 8  PR genes with EsxA-induced up-regulated transcription levels. 
The italic font in Table 1 represents the genes used in qPCR validation; 
“**” above the column indicates the differences between E48 and 
Con48 were significant (P < 0.01)
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Rt: germination rate of EsxA-treated seeds; Rc: germina-
tion rate of control seeds.

Seedling‑dipping Treatment
Rice seeds were soaked in sterile water for 5 days at room 
temperature and then placed on sterile filter paper in six 
Petri dishes, with 16 seeds per Petri dish. To maintain 
humid conditions, 10 mL distilled water was added to the 
Petri dishes, which were then incubated at 28 °C for 24 h. 
When the radicles grew out (approximately 1  cm long), 
10 mL EsxA solution (10 μg/mL, prepared in 50 mM PBS, 
pH 7.5) was added to three Petri dishes (marked as EsxA 
treatment), which were then gently shaken to ensure all 
seedlings were fully soaked. As the control, BSA was 
added to the other three Petri dishes (marked as Con 
treatment). The seedlings in all Petri dishes were incu-
bated at 28  °C with a 12-h light:12-dark cycle for 48  h. 
Next, 5 mL F. oxysporum spore suspension (1 × 106/mL) 
was added to all six Petri dishes, which were then rotated 
to ensure all seedlings were inoculated with spores. Sam-
ples were incubated at 28  °C for 48 h and then at room 
temperature with a 12-h light:12-dark cycle for 5 day-
sThe bud length and root length of all seedlings in each 
Petri dishs were measured. Average plant length or root 
length in each Petri dishes was as one of three biologi-
cal replicates for both of the Con and EsxA treatments, 
respectively. The induction efficiency was calculated 
through germination rate, root length or bud length of 
seedlings using Eq. 2. Because rice seedling blight patho-
gen F. oxysporum can inject seeds and lead to seed rot, 
then the seeds can’t germinate, so we calculated induc-
tion efficiency using germination rates; it can also inhibit 
rice buds and roots growing, so we calculated induction 
efficiency using bud length or root length.

Rt: rice germination rate, root length or bud length of 
EsxAtreatment; Rc: rice germination rate, root length or 
bud length of of Con treatment.

Seedling‑spraying Treatment
Seedling culture: Rice seeds were soaked in sterile water 
for 5  days at room temperature and then placed on a 
sponge mat at the bottom of six plastic pots, with 200 
seeds per pot. To maintain humid conditions, the sponge 
mat was moistened with 10 mL distilled water. Rice seed-
lings were incubated at 30 °C in darkness for 2 days and 
then at 25  °C with a 12-h light:12-dark cycle for 48  h 
(plant length was approximately 1.5 cm and root length 
was approximately 2.5 cm). Rice seedlings were sprayed 

(1)Induction efficiency(%) = (Rt − Rc)/Rc × 100

(2)
Induction efficiency(%) = (REsxA−RCon)/RCon × 100

with sterile water to maintain humid conditions for 
growth.

EsxA spray treatment and analysis of plant biological 
indices: Seedlings in three pots were sprayed with 20 μg/
mL EsxA solution, with 1  mL per pot (marked as EsxA 
treatment). As the control, the seedlings in the other 
three pots were sprayed with a BSA solution (marked as 
Con treatment). After a 48-h incubation, the remaining 
EsxA and BSA solutions in the pots were discarded, after 
which 10 mL sterile water was added to the pots.

Inoculation with F. oxysporum and analysis of bio-
logical indices: 48  h after EsxA treatment, seedlings in 
each of the six pots were dipped in 10 mL F. oxysporum 
spore suspension (1 × 106/mL) for 5  min. After remov-
ing excess spore suspension from the pots, 10  mL ster-
ile water was added to each pot to keep humidity for rice 
seedlings growth. Following a 7-day incubation at room 
temperature (15–20 °C) under natural light, 20 seedlings 
were random sampled from each pot and analyzed (i.e., 
plant length, number of roots, root length, and number 
of white roots). Average plant length, number of roots, 
root length, or number of white roots of the 20 seedlings 
in each pot was as one of three biological replicates for 
both of the Con and EsxA treatments, respectively. The 
rest seedlings in pots were contined incubating for 7 days 
for the following analysis.

Analysis of the effect of EsxA on rice seedling blight 
resistance: At 14 days after the inoculation with F. oxyspo-
rum, all of the rice plants in each pot were examined, the 
number of rice seedlings exhibiting sheath rot and stem 
rot symptoms was recorded. Disease incidence of seed-
ling blight which leaded to sheath rot and stem rot, and 
the EsxA induction efficency were analyzed using Eqs. 3 
and 4. For the caculation of disease incidence of seed-
ling blight, all of the remained seedlings in each pot were 
observed to determin the the incidence rate of sheath rot 
and stem rot, and disease incidence of total 180 seedlings 
in each pot was as one of the three biological replicates.

Analysis of Rice Transcriptome
RiceTreatment and Sampling for Transcriptome‑sequencing 
Analysis
Rice seeds were treated and seedlings were cultured as 
described in the above section. Seeds were sawn in nine 
pots. After emrgenced, rice seedlings were incubated in a 

(3)

Disease incidence(%)

=

(

number of infected plants/total number of plants
)

× 100

(4)

Induction efficiency(%)

= (disease incidence of Con − disease incidence of EsxA)/

disease incidence of Con
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greenhouse with a 12-h light (28 °C): 12-dark (22 °C) cycle 
for 7 days to produce enough biomass for sample analysis. 
At first, as the control, rice seedlings in each of the three 
pots were collected, respectively. Then the roots were cut 
off followed by being washed with distilled water, dried, and 
wrapped in tinfoil then quickly frozen in liquid nitrogen, 
plants (approximate 1  g) collected from each pot was as 
one of the three biological replicate, respectively (marked 
as Con0). The frozen samples were stored at − 80 °C. At the 
same time, the seedlings in other three pots were sprayed 
with 20 μg/mL EsxA solution, with 1 mL per pot (marked 
as E48 treatment). As another control for that of 48 h after 
the EsxA treatment, the seedlings in the last three pots 
were sprayed with a BSA solution (marked as Con48). After 
48 h, seedlings were sampled randomly in each of the six 
pots (the three pots marked E48, and the another three 
pots marked with Con48), the roots of rice seedlings in 
each pot were cut off, and then the rice plants (approximate 
1 g) were washed with distilled water, dried, and wrapped 
in tinfoil, then quickly frozen in liquid nitrogen, plants sam-
pled from each pot as one of the three biological replicates 
of E48 and Con0 treatments. The total nine samples (three 
biological replicates for each of the Con0, Con48 and E48 
treatment) were sent to Bioengineering (Shanghai) Co., Ltd. 
in dry ice for a transcriptome sequencing analysis accord-
ing a transcriptome sequencing projects with the reference 
genome for rice (Oryza sativa L.).

We extracted RNA from young seedlings that including 
sheaths and leaves but excluding roots, because we pre-
dicted that EsxA may induce systemic resistance in plant 
based on our previous studies and references, and to 
investigate whether EsxA can induce systemic resistance 
to seedling blight, but not the local resistance in roots.

The purpose of comparing E48 versus Con0 was to 
investigate which of the genes differentially expressed in 
rice induced by EsxA, were also differentially expressed 
without EsxA induction, but only changed over time 
(Con48 vs. Con0), and the extent to which they differen-
tially express themselves, as well as which genes do not 
change their expression levels over time and are differen-
tially expressed only when induced by EsxA.

Transcriptome‑sequencing and Analysis
Rice total mRNA of the nine samples were isolated using 
E.Z.N.A.® Total RNA Kit (Qmega Bio-tek, Inc., GA, 
USA) according to the manufacturer’s instructions, fol-
lowd by RNase-free DNaseI treating to remove possible 
residual DNA; then mRNA library was constructed as 
the following processes: the mRNA fragmentation, dou-
ble stranded cDNA synthesis, chemical modification of 
cDNA fragments, magnetic bead purification and frag-
mentation sorting, library amplification, detection and 

quality control, and the sequencing by Illumina Hiseq™ 
were performed successively.

After data evaluation and quality control using FastQC, 
short reads were mapped to the rice genome and anno-
tated gene; sequences mapped to the genome were 
assembled using StringTie and then compared with 
known gene models using GFFCompare (version 0.10.1) 
to discover new transcription regions.

Expression level analysis was conducted usig String-
Tie (version 1.3.3b), and calculated -log2(Fold Change), 
and expression difference analysis was performed using 
DESeq2 (version 1.12.4) in R Package and expression dif-
ference was statistic analyzed using DESeq (qValue < 0.05, 
and |FoldChange|> 2). Volcano map was drawed based on 
the gene expression levels between treatmtments; Prin-
cipal component analysis (PCA) was performed based 
on the gene expression level among treatmtments using 
vegan in R Package; and gene GO enrichment analysis 
was performed using topGO (version 2.24.0 in R Pack-
age), and scatter diagram of differentially expressed genes 
between treatments was maped based GO classification 
results using ggplot2 in R package.

Verification of Up‑regulated Genes in Rice by qPCR
Primer Design
Nine genes with up-regulated transcription revealed by 
the transcriptome sequencing data were selected, which 
had been reported as PR genes that can induce systemic 
resistance to diseases. The genes were analyzed by qPCR to 
check the transcriptome sequencing results were reliable, 
with the 18S rRNA gene used as the internal reference con-
trol. Total RNA was extracted from rice samples using the 
E.Z.N.A.® Total RNA Kit (Qmega Bio-tek, Inc., Shanghai, 
China). The primers used in this study are listed in Table 2.

cDNA Synthesis
After analyzing the extracted RNA by agarose gel elec-
trophoresis, the RNA quality and concentration were 
determined using the SMA4000 microspectrophotom-
eter [Merinton (Beijing) Instrument Co., Ltd., Beijing, 
China]. The high-quality RNA was reverse transcribed to 
synthesize cDNA. Briefly, 1500 ng total RNA was added 
to a nuclease-free PCR tube in an ice bath, after which 1 
μL Random Primer P (DN)6 (100 pmol), 1 μL dNTP Mix 
(0.5  mM final concentration), and RNase-free ddH2O 
was added for a final volume of 14.5 μL. After gently mix-
ing, the reaction mixture was centrifuged for 3–5  s. It 
was then incubated at 65 °C for 5 min and then in an ice 
bath for 2 min before centrifuging again for 3–5 s. Next, 
4 μL 5 × RT Buffer, 0.5 μL Ribolock RNase Inhibitor (20 
U) (Thermo Scientific), and 1 μL Maxima Reverse Tran-
scriptase (200 U) were added to the PCR tube, which was 
then gently mixed and centrifuged for 3–5  s. The RNA 
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was reverse transcribed to cDNA in a thermal cycler 
under the following conditions: 25  °C for 10 min, 50  °C 
for 30 min, and 85 °C for 5 min. The PCR tube was then 
stored at − 20 °C.

qPCR Analysis
The cDNA samples were diluted 20 times and used as 
the template for a qPCR, which was completed using 
the StepOne Plus system (ABI, Foster, CA, USA) and the 
2 × SG Fast qPCR Master Mix. The 20 μL reaction mix-
ture included 10 μL SG Fast qPCR Master Mix, 0.4 μL F 
primer (10 μM), 0.4 μL R primer (10 μM), 7.2 μL ddH2O, 
and 2 μL cDNA template. The qPCR program was as fol-
lows: 95 °C for 3 min; 45 cycles of 95 °C for 5 s and 60 °C 
for 30 s; dissociation according to instrument guidelines. 
The qPCR analysis was repeated three times.

Data Analysis
The SPSS 13.0 software (Chicago, USA) was used to 
evaluate the significance of the difference between two 
variables. A One-way ANOVA was performed for inde-
pendent replicates of the same trial. The significant dif-
ference was determined at 0.05 levels and 0.01 levels. 
Paired-samples T test was conducted to detect whether 
the data violate the assumption. Bar graphs were pre-
pared using Excel 2010.
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