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Dissection of the Genetic Basis of Rice 
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Abstract 

Panicle architecture is one of the major factors influencing productivity of rice crops. The regulatory mechanisms 
underlying this complex trait are still unclear and genetic resources for rice breeders to improve panicle architecture 
are limited. Here, we have performed a genome-wide association study (GWAS) to analyze and identify genetic deter-
minants underlying three panicle architecture traits. A population of 340 rice accessions from the 3000 Rice Genomes 
Project was phenotyped for panicle length, primary panicle number and secondary branch number over two years; 
GWAS was performed across the whole panel, and also across the japonica and indica sub-panels. A total of 153 quan-
titative trait loci (QTLs) were detected, of which 5 were associated with multiple traits, 8 were unique to either indica 
or japonica sub-panels, while 37 QTLs were stable across both years. Using haplotype and expression analysis, we 
reveal that genetic variations in the OsSPL18 promoter significantly affect gene expression and correlate with panicle 
length phenotypes. Three new candidate genes with putative roles in determining panicle length were also identi-
fied. Haplotype analysis of OsGRRP and LOC_Os03g03480 revealed high association with panicle length variation. Gene 
expression of DSM2, involved in abscisic acid biosynthesis, was up-regulated in long panicle accessions. Our results 
provide valuable information and resources for further unravelling the genetic basis determining rice panicle archi-
tecture. Identified candidate genes and molecular markers can be used in marker-assisted selection to improve rice 
panicle architecture through molecular breeding.

Keywords:  Rice, Panicle architecture, Panicle length, Genome-wide association study, Quantitative trait loci, 
Hormone, Natural variation

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Rice (Oryza sativa L.) is a staple food crop. It has been 
estimated that an additional 116 million tons of rice 
per year will be needed by 2035 to feed growing popu-
lations (Seck et  al. 2012). Panicle size and architecture 
are key agronomic traits that greatly affect yield, so 

understanding the molecular and genetic mechanisms 
underlying panicle development is of great importance to 
both plant biologists and modern breeders.

Panicle architecture has various quantitative charac-
teristics, such as panicle length (PL), and the numbers 
of primary branches (PBN), secondary branches (SBN), 
and spikelets/grain, that affect yield (Crowell et al. 2016). 
Over the past two decades, a number of genes regulating 
panicle development have been identified and function-
ally characterized, e.g., SP1 (Li et al. 2009), DEP2 (Li et al. 
2010; Zhu et al. 2010) and DEP3 (Qiao et al. 2011) affect 
panicle length; and OsSPL14 (Jiao et al. 2010; Miura et al. 
2010), ASP1 (Yoshida et al. 2012), and APO1 (Terao et al. 
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2010) affect branch number. Many panicle trait genes 
are also pleiotropic, e.g., MOC1 (Li et  al. 2003), LAX1 
(Komatsu et al. 2001), and OsSPL14 (Lu et al. 2013) affect 
not only branch number, but also tillering; while defects 
in OsSPL18 decreased grain size and number and panicle 
length, but increased tillering (Yuan et al. 2019).

Panicle architecture QTLs commonly associate with 
other growth traits, in particular, heading date, e.g., Hd1 
(Zhang et al. 2019c), EHD4 (Gao et al. 2013), Ghd7 (Xue 
et  al. 2008), Ghd7.1 (Liu et  al. 2013), and DTH8 (Wei 
et  al. 2010). Plant hormones can also play crucial roles 
in panicle development, and factors controlling hor-
mone metabolism can affect panicle architecture, e.g., 
Gn1a/OsCKX2 (Ashikari et  al. 2005) and LP/EP3 (Piao 
et  al. 2009; Li et  al. 2011) control spikelet number per 
panicle by regulating cytokinin; OsGRF4 affects panicle 
architecture by mediating gibberellin and brassinoster-
oid responses (Che et  al. 2015; Tang et  al. 2018); while 
OsPIN5b determines panicle length by participating in 
auxin homeostasis (Lu et al. 2015).

With the advent of next-generation sequencing, 
genome-wide association studies (GWAS) that link 
genotype with phenotype in a natural population have 
rapidly become powerful gene/QTL mapping tools to 
detect complex agronomic traits, superseding the tradi-
tional time-consuming, imprecise QTL mapping tech-
niques used in the past (Huang et  al. 2010, 2012; Wang 
et  al. 2018b). GWAS has been successfully used to dis-
sect complex traits in multiple crop species, including 
barley (Cockram et  al. 2010), maize (Wang et  al. 2016), 
sorghum (Zhou et  al. 2019), wheat (Luján Basile et  al. 
2019), potato (Okada et al. 2019), and cotton (Hinze et al. 
2017). Dissection of QTL and identification of candidate 
genes associated with panicle development have recently 
been assisted by GWAS in rice. However, most of them 
have been conducted with low-density SNPs and do not 
have sufficient resolution to provide precise and com-
plete information about the numbers and locations of 
the QTLs controlling the traits of interest (Reig-Valiente 
et al. 2018; Ta et al. 2018; Zang et al. 2015; Bai et al. 2016; 
Crowell et al. 2016; Rebolledo et al. 2016).

The recent 3000 Rice Genomes Project (3 K RGP) has 
provided a high-density single nucleotide polymorphisms 
(SNPs) database that is becoming popular for mining use-
ful genetic information in rice using GWAS. For exam-
ple, Jiang et al. (2020) detected 13 genetic loci related to 
development of leaf hairs; Zhang et al. (2019a,b,c) found 
27 suggestively associated loci for sheath blight; while Shi 
et al. (2017) detected 22 significant salt tolerance-associ-
ated SNPs at the seed germination stage.

Here, we have used a panel of 340 diverse rice acces-
sions selected from the 3  K RGP to perform GWAS on 
three panicle traits—PL, PBN, and SBN. We report 153 

QTLs that significantly associate with variations in pani-
cle architecture, and characterize the nucleotide diver-
sity and expression levels of major OsSPL18 haplotypes. 
In addition, we have used haplotype and gene expression 
analysis to identify three novel candidate genes (OsGRRP, 
LOC_Os03g03480 and DSM2) that associate with panicle 
length. Our findings provide the basis for further eluci-
dating mechanisms underlying panicle size and shape in 
rice.

Results
Panicle Phenotype Variation Across Rice Accessions
Panicle phenotype was analyzed in a panel of 340 japon-
ica and indica accessions from the 3  K Rice Genomes 
Project with diverse genotypes, origins, and subpopula-
tions. These rice varieties originate from 48 countries 
across Asia, Australia, North and South America, Europe, 
and Africa (Additional File 2: Table S1), and phylogenetic 
and principal component analyses confirmed that they 
fell into two main clades: indica (Xian, 161 accessions) 
and japonica (Geng, 179 accessions; Additional File 1: 
Figure S1a,b). The genome-wide linkage disequilibrium 
(LD) decay rates along chromosomes were found to be 
similar across the whole panel and indica and japonica 
sub-panels (Additional File 1: Figure S1c), and consistent 
with previous reports (Wang et al. 2018b).

Panicle length (PL), primary branch number (PBN), 
and secondary branch number (PBN) for the main pani-
cle in all 340 varieties were evaluated for 2 growing sea-
sons (2015 and 2017 in Hainan, China; Table  1). SBN 
displayed the largest phenotypic variation, with coef-
ficients of variance (CVs) from 30–35%, while the PL 
and PBN traits were less variable. While all three traits 
exhibited normal distribution (Fig. 1a–c, Additional File 
1: Figure S2a–c), there was an obvious difference between 
the two years. Panicles in 2015 were generally longer and 
more branched (Table 1), indicating that these quantita-
tive traits are controlled by genetic and environmental 
factors. In general, panicle architecture traits showed a 
high heritability, with broad-sense heritability (H2) from 
75 to 84% in 2017 samples. These populations thus exhib-
ited extensive variation in panicle architecture traits 
strongly linked to genotype, making them suitable for 
genome-wide association studies (GWAS).

Analysis of the japonica and indica sub-panels revealed 
that values for the three panicle traits largely overlapped, 
though values for indica varieties were generally higher 
than for japonica varieties (Fig.  1d–f, Additional File 
1: Figure S2d–f), consistent with previous reports (Ta 
et  al. 2018). The three panicle traits only weakly cor-
related with one another in each year (Additional File 
1: Figure S3a, b). Generally, correlations were strongest 
between PBN and SBN, as secondary branches originate 
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from primary branches; with the next highest correlation 
between PL and PBN, again, as primary branches come 
from the rachis of the panicle.

Association Mapping of Three Panicle Architecture Traits
Across the three traits in two years, 1087 significant SNPs 
yielded 153 QTLs in 148 genomic regions across the 
three rice panels (Fig. 2, Additional File 1: Figures S4–S6 
and Additional File 2: Table S2). GWAS mapping resulted 
in 129 individual QTLs (115 for PL, 12 for PBN, and 2 for 

SBN) for the whole panel; 11 QTLs (7 for PL, 1 for PBN, 
and 3 for SBN) for the japonica sub-panel; and 21 QTLs 
(6 for PL, 6 for PBN, and 9 for SBN) for the indica panel. 
Only 5 QTLs (qPL3-14/qPBN3-1, qPL5-3/qPBN5-1, 
qPL5-16/qPBN5-2, qPL6-1/qPBN6-1, qPL11-3/qSBN11-
1) were common across more than one trait. Intriguingly, 
there were no common QTLs between PBN and SBN, 
suggesting different regulatory mechanisms underlie 
these two levels of panicle branching. Only 37 QTLs (31 
for PL and 6 for SBN) were stable across 2015 and 2017, 

Table 1  Phenotypic variations of panicle traits

Branch numbers per panicle; mean ± SD of 3 replicates

CV coefficient of variation (%)

Trait 2015 2017

Mean Min Max CV Mean Min Max CV

Panicle length (cm) 22.1 ± 3.3 13.5 37.1 15 20.1 ± 3.2 11.5 32.4 16

Primary branches (#) 10.7 ± 2.0 6.0 17.0 19 9.0 ± 2.2 4.8 16.0 24

Secondary branches (#) 29.0 ± 9.0 8.0 61.0 30 22.0 ± 7.8 7.6 52.0 35

Fig. 1  Panicle architecture traits of the three rice panels in 2017. a–c Distributions of a panicle length (PL), b primary branch number (PBN), and 
c secondary branch number (SBN) of the whole panel. H2, broad-sense heritability. d–f Box plot of the phenotypic variation of d PL, e PBN, and f 
SBN within the whole panel, and indica and japonica sub-panels. Boxes show median, and upper and lower quartiles. Whiskers extend to 1.5 × the 
interquartile range, with any remaining points indicated with dots
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suggesting that these loci contain genes that function in 
panicle architecture without the influence of environ-
mental factors (Additional File 2: Table S3).

Among the 37 stable QTLs, comparison with previous 
literature revealed overlaps with 8 known genes, and 10 
QTLs from other GWAS analyses and QTARO (Addi-
tional File 2: Tables S3 and S4, respectively). The remain-
ing 19 QTLs (15 for PL and 4 for SBN) are the novel, and 
thus we did further analysis (Additional File 2: Table S5).

OsSPL18, the Candidate Gene of qPL9‑6
One stable QTL, qPL9-6, was found to contain OsSPL18 
gene, which had previously been reported to affect pani-
cle length and grain number via new regulatory pathways 
(Yuan et al. 2019); but the influence of genetic sequence 
diversity within this gene was not examined. We ana-
lyzed SNPs in the 2 kb upstream promoter and genomic 
OsSPL18 coding region to reveal six major haplotypes. 
Indica varieties generally contained a higher proportion 
of HapB, HapC, and HapD types, while japonica varieties 
contained a higher proportion of HapA, HapE, and HapF 
sequences (Fig. 3a). The panicle length of accessions con-
taining HapE and HapF was significantly lower than for 
other haplotypes (Fig. 3b). Therefore, this result is useful 
for clarifying the panicle length variation within japonica 
varieties because haplotype E and F exhibited smaller 
panicle length than other haplotypes and were only found 
in japonica group except three indica accessions (Fig. 3a).

A large proportion of SNPs were identified in the pro-
moter and introns compared with the coding sequence, 
suggesting that these genetic variations may impact 
OsSPL18 gene expression. Gene expression analysis 
from rachis revealed that HapE varieties had significantly 
higher levels of OsSPL18 expression than HapA/B/C/D 
varieties; HapF expression levels were intermediate, and 
not significantly different to either of the other groups 
(Fig.  3c, Additional file  2: Table  S6). In addition, haplo-
type analysis showed that two non-synonymous SNPs 
variation (Chr9_19647656, base G-T, amino acid Gly-Val, 
Chr9_19647782, base C-T, amino acid Thr-Met) were 
also significantly associated with panicle length (data not 
shown). Therefore, both polymorphisms in the coding 
and promotor regions of OsSPL18 may cause the varia-
tion of panicle length.

OsGRRP, the Candidate Gene of qPL3‑7
The lead SNP (Chr3_3720893(T/C), P = 1.1 × 10–11 in 
2015 and 1.19 × 10–09 in 2017) in qPL3-7 caused a mis-
sense mutation from cysteine to arginine in the first exon 
of OsGRRP (LOC_Os03g07310), predicted to encode a 
growth regulator–related protein (Fig.  4a–b). Panicle 
length correlated significantly with gene haplotype at this 
location in the whole panel and japonica sub-panel in 
both years. In the indica sub-panel, there was no differ-
ence in the panicle length of two haplotype (Fig. 4c, Addi-
tional file 1: Figure S7). However, an obvious difference in 

Fig. 2  Manhattan plots of GWAS for panicle length in a 2015 and b 2017 for all accessions. The red arrows represent three significant associations, 
assigned when the peak SNP correlation exceeds the significance threshold, −log10(P) > 5.69 (P < 2.04 × 10–6)
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Fig. 3  Haplotype analysis of OsSPL18. a Six haplotypes of SPL18 based on 26 SNPs observed in all assessed rice accessions. The schematic 
representation of SPL18 gene structure (upper) shows the promoter as a white box, exons as green boxes, and introns and intergenic regions as 
black lines. Thin black lines indicate the genomic position of each SNP. Haplotypes with fewer than 10 accessions are not shown. Yellow highlight 
indicates SNP alternatives. The SNP in red and bold is a non- synonymous SNP. ‘$1’ indicates a missense mutation from Gly to Val. ‘$2’ indicates a 
missense mutation from Thr to Met b–c Box plots for b panicle length based on the six haplotypes for SPL18 in 2017 and c OsSPL18 expression 
levels in different haplotypes relative to OsActin1. Boxes show median, and upper and lower quartiles. Whiskers extend to 1.5 × the interquartile 
range, with any remaining points indicated with dots. *P < 0.05, ***P < 0.001 (ANOVA). Letters indicate significant differences, P < 0.05 (Duncan’s 
multiple comparison test)
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allele frequency was observed between the japonica and 
indica varieties: nearly all (97%) of the indica lines con-
tained the long panicle HapB allele, compared with 46% 
of the japonica varieties (Fig. 4d). This genetic difference 

may partially explain the longer average panicle length in 
indica varieties (Ta et al. 2018).

Fig. 4  Haplotype analysis of the candidate gene in qPL3-7. a Local Manhattan plot of qPL3-3 on chromosome 3. The red arrow indicates the 
position of the lead SNP. b Schematic representation of OsGRRP gene structure and the position of peak SNP used for haplotype analysis. Green 
boxes indicate exons. c Box plots for panicle length (PL) in the two haplotypes of OsGRRP in all, japonica, and indica accessions in 2017. Number of 
accessions (n) of each haplotype (Hap) in each panel given under the x-axis. Boxes show median, and upper and lower quartiles. Whiskers extend 
to 1.5 × the interquartile range, with any remaining points indicated with dots. ***P < 0.001 (Welch two sample t-test). d Frequencies of the two 
OsGRRP haplotypes in all, japonica, and indica accessions. n, number of accessions in each panel
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Two candidate Genes of qPL3‑3
qPL3-3 was especially attractive, as it contained the 
highest number of SNPs (444 and 291 in 2015 and 2017, 
respectively; Additional File 2: Table  S5). After removal 
of genes encoding hypothetical proteins, retrotranspo-
sons, and transposon proteins, 28 candidate genes were 
identified (Additional File 2: Table S7).

We observed 23 stable non-synonymous SNPs in the 
coding region of 6 genes detected in two years (Addi-
tional File 2: Table  S7). LOC_Os03g03480, encoding 
a DUF623 domain containing protein caught more 

attention. Previous studies have demonstrated that these 
kinds of proteins are involved in panicle length (Schmitz 
et  al. 2015; Yang et  al. 2018). Two types of haplotypes 
based on 3 non-synonymous SNPs and panicle length 
correlated significantly with gene haplotypes (Fig.  5a, 
b), suggesting that LOC_Os03g03480 might be a can-
didate gene involved in panicle length. Besides these 6 
genes, OsSWN5 and LOC_Os03g03260 in qPL3-3 were 
of interest as other genes annotated as “no apical mer-
istem protein” and “homeobox domain containing pro-
tein” (LOC_Os01g47710 and LOC_Os05g48990) had 

Fig. 5  Two candidate genes analysis in qPL3-3. a Schematic representation of LOC_Os03g03480 structure and the position of 3 non-synonymous 
SNP used for haplotype analysis. b Box plots for panicle length (PL) in the two haplotypes of LOC_Os03g03480 in 2017. Boxes show median, and 
upper and lower quartiles. Whiskers extend to 1.5 × the interquartile range, with any remaining points indicated with dots. ***P < 0.001 (Welch two 
sample t-test). c Relative expression of DSM2 in short panicle (SP) and long panicle (LP) accessions. The blue and green horizontal lines depict the 
average expression levels in the SP and LP accessions, respectively. ***P < 0.001 (Welch two sample t-test). SP1: IRIS_313-8085; SP2: IRIS_313-8096; 
SP3: IRIS_313-8099; SP4: IRIS_313-8195; SP5: IRIS_313-8048; LP1: IRIS_313-8903; LP2: B199; LP3: IRIS_313-9505; LP4: IRIS_313-7993; LP5: IRIS_313-799
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previously been shown to have a role in controlling pani-
cle length in rice (Wang et al. 2014; Sakuraba et al. 2015; 
Fang et  al. 2020), so OsSWN5 and LOC_Os03g03260 in 
qPL3-3 were of interest. Similarly, panicle length is sensi-
tive to genes involved in plant hormone biosynthesis or 
signaling, including ABA (Wang et al. 2015b; Hong et al. 
2016; Zhang et  al. 2016), so DSM2 (LOC_Os03g03370), 
which encodes a β-carotene hydroxylase involved in the 
biosynthesis of the ABA precursor zeaxanthin (Du et al. 
2010), was also a gene of interest in qPL3-3. These 3 genes 
were thus selected as candidates for expression analysis 
in a small group of 5 short panicle (SP) and 5 long pani-
cle (LP) accessions (Fig. 5b, Additional file 1: Figure S8). 
Only DSM2 was differentially expressed between SP and 
LP varieties, being more highly expressed in the LP rather 
than in SP lines. Thus, expression of DSM2 was positively 
associated with panicle length, and also likely accounts 
for the association of qPL3-3 with panicle length.

Discussion
Rice panicle size and architecture are important factors 
for rice yield. Panicle architecture is a complex quanti-
tative trait controlled by both genes and environment 
(Cubry et al. 2020). The diversity of genetic variation in 
natural populations is an important potential source of 
beneficial alleles. Here, we have performed GWAS on 
340 rice accessions selected from 3  K RGP to identify 
new genes underlying panicle architecture traits.

Phenotypic Variations for Targeted Traits
A high heritability was observed in the three analyzed 
panicle architecture traits, indicating that their diversity 
was more under genetic than environmental control in 
these accessions (Fig. 1). Moreover, similar trends of pos-
itive correlation between these three traits were observed 
in the whole panel and indica and japonica sub-panels 
(Additional File 1: Figure S3), consistent with the GWAS 
results in which some QTLs could be detected in two 
years or associated with multiple traits (Additional File 2: 
Table S2). However, despite the high correlation between 
PBN and SBN, there was no single SNP that associated 
with both PBN and SBN, suggesting that the mechanisms 
related to their establishment and function are regulated 
by discrete genetic determinants (Ta et al. 2018).

A small number of GWAS sites in this study were 
detected only in indica or japonica sub-panels (Addi-
tional File 2: Table  S2). Differences between panicle 
architecture between japonica and indica subspecies 
have previously been observed, driven in part by artificial 
human selection and geographic regions of cultivation, 
such as Ghd7, evolved from two distinct ancestral gene 
pools (Xue et al. 2008). Another gene from japonica cul-
tivars, LSCHL4 (allelic to NAL1), was shown to enhance 

grain productivity when introduced into indica cultivars 
through pleiotropic effects on plant architecture (Zhang 
et al. 2014). These results suggest that there are different 
genetic networks regulating panicle architecture varia-
tion in indica and japonica sub-panels.

GWAS‑Based Mapping of PL, PBN, and SBN QTLs
GWAS is an efficient technique to analyze genetic varia-
tion for multiple traits in rice. Several studies employed 
GWAS in the rice population for various panicle archi-
tecture traits and reported some novel QTLs (Zhang 
et  al. 2015; Sahu et  al. 2020), but such study in diverse 
rice landrace is limited. In the present study, our results 
yielded 153 QTLs for panicle architecture traits. Of these, 
5 were associated with more than one trait, which sug-
gests that these loci contain pleiotropic genes (Additional 
File 2: Table S2). 37 QTLs could be detected over 2 years 
(Additional File 2: Table  S3), indicating these QTLs in 
rice were stable against environmental factors and sup-
porting the notion of panicle architecture depends not 
only on genetic diversity but also the environmental fac-
tors. Among the 37 stable QTLs, we observd that 8 genes 
were known to be involved in panicle architecture (Addi-
tional File 2: Table S3), suggesting that our results are of 
high reliability. For example, SPOTTED LEAF3(SPL3), 
which is involved in ABA and ethylene signalling path-
ways (Wang et al. 2015a), was co-localized with qPL3-6. 
LAX2, which is involved in maintenance of apical mer-
istems in rice, including in the panicle (Tabuchi et  al. 
2011), was found in qPL4-3. 10 QTLs from other studies 
and the remaining 19 QTLs are reported here for the first 
time, and represent promising targets for further analy-
sis of panicle architecture (Additional File 2: Table  S5). 
Overall, the QTLs detected in this study indicated that 
a number of as yet unknown factors may be involved in 
the determination of panicle architecture and helpful in 
molecular marker-assisted selection of rice panicle shape 
breeding.

Candidate Gene Analysis for Three QTLs
In rice, the SQUAMOSA-PROMOTER BINDING PRO-
TEIN-LIKE (SPL) family proteins play important roles 
during panicle development. To date, five known SPL 
genes (OsSPL6, OsLG1/OsSPL8, OsSPL13, IPA1/WFP/
OsSPL14, and OsSPL18) have been reported to regulate 
panicle architecture in rice (Jiao et al. 2010; Miura et al. 
2010; Ishii et al. 2013; Zhu et al. 2013; Si et al. 2016; Wang 
et  al. 2018a; Yuan et  al. 2019). OsSPL18 was located in 
qPL9-6, a QTL associated with panicle length, and we 
have used haplotype and expression analysis to show that 
nucleotide polymorphisms in the OsSPL18 promoter 
significantly affect gene expression and panicle length 
(Fig.  3). Haplotypes with the desired phenotype may be 



Page 9 of 12Bai et al. Rice           (2021) 14:77 	

suitable for traditional rice breeding and are also good 
targets for molecular marker-assisted selection breeding.

Analysis of the leading SNP in OsGRRP in qPL3-7 
revealed two haplotypes (Fig.  4a, b). Significant differ-
ences in mean panicle length were associated with hap-
lotype in the whole panel and japonica accessions, with 
HapB directing the longer phenotype (Fig. 4c), indicating 
that OsGRRP may be responsible for panicle length vari-
ation. Differences in haplotype frequency in the two sub-
species, with 97% of indica accessions containing HapB 
(Fig.  4d), suggests that OsGRRP has been subjected to 
selection during rice breeding and may have contributed 
to differentiation of the two subspecies.

Among the QTLs for panicle length that were the 
same across both years, we selected qPL3-3 for further 
analysis of causal genes due to high SNP concentrations 
(Additional File 2: Table S5). We, firstly, based on func-
tional annotation and haplotype analysis, proposed that 
LOC_Os03g03480, a DUF623 domain containing protein, 
is one of candidate gene in qPL3-3. Furthermore, three 
candidate genes were selected for expression analysis 
based on their functional annotation (Additional File 2: 
Table S7). Expression of DSM2, a fatty acid hydroxylase 
involved in ABA synthesis, was found to correlate with 
panicle length (Fig.  5), indicating that during the rice 
panicle development, the altered expression of enzyme 
genes related to the ABA synthesis pathway contributes 
to the rice panicle length determination, consistent with 
the previous results (Wang et  al. 2015b; Zhang et  al. 
2016).

Natural Variations of Candidate Genes
Natural variation in genes involved in the regulation of 
important agronomic traits has been utilized by breeders 
to improve rice yield. Although dozens of genes related 
to panicle architecture have been identified using multi-
ple strategies, only a few reported genes, like NAL1, have 
been applied in rice breeding (Fujita et  al. 2013; Zhang 
et al. 2014).

GWAS enables the exploration of the large of alleles 
present in genetic resources and that are useful in rice 
improvement. The differential expression profile strategy 
combination of GWAS is a powerful method for target-
gene mining. In this study, Expression analysis of candi-
date genes revealed two genes, DSM2 and OsSPL18, that 
were up- and down-regulated, respectively, in long pani-
cle accessions. These results suggest that transcriptional 
regulation of the candidate genes may through SNP vari-
ations in promoter region and then contribute to panicle 
length variation in rice. Modification of the core pro-
moters of targeted genes by genome editing is a widely 
applicable and reliable approach for the fine-tuning of the 
expression of target genes (Huang et al. 2020; Zeng et al. 

2020), so the further studies to understand the mecha-
nisms involved in transcriptional regulation of these 
two genes will be conducted. Moreover, haplotype anal-
ysis was carried out for two genes (OsGRRP and LOC_
Os03g03480) using significant non-synonymous SNPs 
located inside of the gene CDS region, especially a non-
synonymous SNP (Chr3_3720893(T/C)) variation was 
observed in OsGRRP, which resulted in an amino-acid 
substitution from cysteine to arginine (Fig. 4), was most 
likely to be the functional site. Overall, further functional 
analysis of these candidate gene will help us better under-
stand the genetic basis for natural variation in rice pani-
cle architecture control and suggest that these genes may 
be used to improve the rice yield.

Conclusions
In our study, we have dissected the genetic basis underly-
ing differences in rice panicle architecture traits in indica 
and japonica subspecies. We identified natural variation 
in the promoter of OsSPL18 that affects gene expression 
level and panicle length. Using gene functional annota-
tion, haplotype analysis, and expression analysis after 
GWAS, we have identified three novel candidate genes 
associated with panicle length. Genetic complementa-
tion, overexpression, and knockout studies of these three 
candidates will clarify their role in directing rice pani-
cle length, and will be a focus for further studies. More 
broadly, other SNPs and genes reported here could be 
used for future research, gene validation, and marker-
assisted selection for molecular breeding of rice with 
enhanced panicle architecture.

Materials and Methods
Plant Materials and Growing Conditions
A panel of 340 rice varieties were selected from the 3 K 
Rice Genomes Project, comprising 161 indica (Xian) 
and 179 japonica (Geng) accessions (Wang et al. 2018b). 
Detailed information regarding these accessions, includ-
ing their geographical origin, is shown in Additional File 
2: Table S1. All accessions were grown in the experimen-
tal fields around Sanya (Hainan province, China; 18°15′N, 
109°30’E) from January to April in 2015 and 2017. Six 
plants of each variety were planted in a row with 17 cm 
between plants and 20  cm between rows. Panicle traits 
were measured only from the main tiller in each plant.

Population Genetic Analyses
3,214,392 SNPs (all accessions), 923,587 SNPs (japonica 
accessions), and 1,501,869 SNPs (indica accessions) with 
a minor allele frequency (MAF) of ≥ 5% and a missing 
rate of ≤ 20% were selected for population and associa-
tion analyses.
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K-estimation (K = 2) was based on the subgroups of all 
accessions(Wang et al. 2018b). PCA were performed with 
GCTA software (https://​cnsge​nomics.​com/​softw​are/​
gcta/#​Overv​iew) and neighbor-joining trees were con-
structed with SNPhylo based on SNPs in all accessions 
(Lee et al. 2014).

Linkage disequilibrium (LD) measures between SNP 
loci at the individual chromosome level were plotted by 
evaluating r2 (squared allele frequency correlation) esti-
mators between significant marker(s) using the PopLD-
decay (Zhang et al. 2019a).

Data Analysis
The three panicle related traits were measured as previ-
ously described (Crowell et al. 2016). Statistical analyses 
were performed in Excel 2010 (Microsoft) and SPSS soft-
ware (version 18.0). Welch two sample t-test were used to 
analyze differences between the three rice panels. Panicle 
length and expression data of OsSPL18 haplotypes were 
analyzed using ANOVA and Duncan’s multiple test in the 
SPSS software.

Pearson’s correlations were used to examine the corre-
lations between traits in 2015 and 2017, and the broad-
sense heritability ( H2

B
 ) was calculated in 2017 to describe 

how each trait was affected by the environment as fol-
lows: H2

= var(G)/
(

var(G) + var(E)

)

, where var(G) and 
var(E) are the genotypic and experimental variance, 
respectively.

GWAS for Panicle Architecture
The 3 K RGP 4.8mio SNP dataset was downloaded from 
the Rice SNP-Seek Database (http://​snp-​seek.​irri.​org/; 
Alexandrov et al. 2015). GWAS was performed on SNPs 
as described above using the factored spectrally trans-
formed linear mixed models (FaST-LMM; Lippert et  al. 
2011). The significance threshold for the identification 
of QTLs was set to P < 2.04 × 10–6, and the SNP with the 
minimum P value was considered the lead SNP. Manhat-
tan plots for the GWAS results were drawn using the R 
package ‘qqman’ (https://​www.r-​proje​ct.​org/).

Haplotype Analysis and Identification of Candidate Genes
Candidate genes were scanned within the 200 kb region 
centered on the lead SNP of each QTL (using the refer-
ence Nipponbare genome (http://​rice.​plant​biolo​gy.​msu.​
edu/​cgi-​bin/​gbrow​se/​rice/). The 2019 QTARO and MSU 
databases (http://​qtaro.​abr.​affrc.​go.​jp and http://​rice.​
plant​biolo​gy.​msu.​edu) were used to identify previously 
reported QTLs/genes present in the LD region. Candi-
date genes were identified based on predicted function 
from the rice genome annotation project.

All SNPs in the promoter region (2 kb) of OsSPL18 and 
non-synonymous SNPs in OsSPL18 exons, introns, and 

3′ untranslated region were selected from the Rice SNP-
Seek Database (https://​snp-​seek.​irri.​org/).

Gene Expression Analysis
Rachis from 5 short panicle (SP) and 5 long panicle (LP) 
accessions, grown in the paddy field of Shanghai JiaoTong 
University, were collected in triplicate at the stage of 50% 
panicle emergence from the leaf sheath based on the PL 
in 2017. Average PL for SP accessions was 12.4 cm; for LP 
accessions, 25.9 cm in 2017.

Total RNA was extracted using the Trizol reagent 
(Invitrogen), following the manufacturer’s instructions. 
cDNA was synthesized from total RNA using the Fast-
Quant RT Kit (with gDNase; Tiangen). Quantitative 
real time PCR (qRT-PCR) was performed in a two-step 
reaction using SuperReal PreMix Color (SYBR Green; 
Tiangen) on a Roche Light Cycler 2.10 system using the 
2−ΔΔCt method (Livak and Schmittgen 2001) with three 
technical replicates. Expression levels were normalized to 
OsActin1 (LOC_Os03g50885).

The sequences of the candidate genes were downloaded 
from the Rice Genome Annotation Project (http://​rice.​
plant​biolo​gy.​msu.​edu/​analy​ses_​search_​locus.​shtml). 
Primer sequences for candidate genes were downloaded 
from the qPrimerDB-qPCR Primer Database (https://​
biodb.​swu.​edu.​cn/​qprim​erdb/​best-​prime​rs-​ss) except 
for OsSWN5, for which primers were designed by NCBI. 
Primer sequences are given in Additional File 2: Table S8.
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