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Abstract

Background: Effective tiller number (ETN) has a pivotal role in determination of rice (Oryza sativa L.) grain yield.
ETN is a complex quantitative trait regulated by both genetic and environmental factors. Despite multiple tillering-
related genes have been cloned previously, few of them have been utilized in practical breeding programs.

Results: In this study, we conducted a genome-wide association study (GWAS) for ETN using a panel of 490 rice
accessions derived from the 3 K rice genomes project. Thirty eight ETN-associated QTLs were identified,
interestingly, four of which colocalized with the OsAAP1, DWL2, NAL1, and OsWRKY74 gene previously reported to
be involved in rice tillering regulation. Haplotype (Hap) analysis revealed that Hap5 of OsAAP1, Hap3 and 6 of DWL2,
Hap2 of NAL1, and Hap3 and 4 of OsWRKY74 are favorable alleles for ETN. Pyramiding favorable alleles of all these
four genes had more enhancement in ETN than accessions harboring the favorable allele of only one gene.
Moreover, we identified 25 novel candidate genes which might also affect ETN, and the positive association
between expression levels of the OsPILS6b gene and ETN was validated by RT-qPCR. Furthermore, transcriptome
analysis on data released on public database revealed that most ETN-associated genes showed a relatively high
expression from 21 days after transplanting (DAT) to 49 DAT and decreased since then. This unique expression
pattern of ETN-associated genes may contribute to the transition from vegetative to reproductive growth of tillers.

Conclusions: Our results revealed that GWAS is a feasible way to mine ETN-associated genes. The candidate genes
and favorable alleles identified in this study have the potential application value in rice molecular breeding for high
ETN and grain yield.
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Background
Rice (Oryza sativa L.) is one of the main staple crops
worldwide and improving rice yield is an urgent need
for the increasing world’s population (Lobell et al. 2011).
Effective tiller number (ETN) per plant is an essential
yield component for rice and affected by both genetic
and environmental factors (Xing & Zhang 2010). Rice
tiller derives from two processes, axillary meristem (AM)
formation and tiller bud outgrowth (Wang & Li 2011),
which are regulated by many genes. MOC1, encoding a
GRAS domain transcription factor, plays a pivotal role
in AM formation, and the loss-of-function moc1 mutant
shows a monoculm phenotype (Li et al. 2003). MOC3/
OsWUS/TILLERS ABSENT1 (TAB1) is also indispens-
able for tiller bud formation (Lu et al. 2015b), which
may promote AM initiation by inducing the expression
of OSH1 (Tanaka et al. 2015). Besides, LAX PANICLE1
(LAX1) and LAX2 can physically interact with MOC1
and also regulate AM formation (Oikawa & Kyozuka
2009; Tabuchi et al. 2011). Tiller bud outgrowth is sup-
pressed by a newly discovered plant hormone, strigolac-
tones (SLs) (Gomez-Roldan et al. 2008). Typical SL
mutants display dwarf and increased tillering, such as
d27 (Lin et al. 2009), htd1/d17 (Zou et al. 2006), and
d10 (Arite et al. 2007; Yuan et al. 2013), whose respon-
sible genes are involved in SL synthesis; htd2/d14 (Liu
et al. 2009), d3 (Yasuno et al. 2009; Zhao et al. 2014)
and d53 (Zhou et al. 2013; Jiang et al. 2013), whose re-
sponsible genes are involved in SL signaling.
Besides SL, other plant hormones can also affect rice

tiller growth. For instance, overexpression of OsPIN2 or
OsPIN9, both encoding an auxin efflux transporter, led
to increased tiller number (TN) (Chen et al. 2012; Hou
et al. 2021). OsCKX9, encoding a cytokinin (CK) cata-
bolic enzyme, suppressed tillering upon transcriptional
activation by SL (Duan et al. 2019). DELLA protein
SLENDER RICE 1, a repressor of gibberellin (GA) sig-
naling, inhibits MOC1 degradation to regulate both til-
lering and plant height (Liao et al. 2019). Tiller growth
could also be influenced by some genes independent of
plant hormones. For example, MOC2 encodes a
fructose-1,6-bisphosphatase participating in sucrose syn-
thesis, and the moc2 mutant also shows monoculm
phenotype (Koumoto et al. 2013). Hd3a is the homolog
of Arabidopsis FLOWERING LOCUST (FT) protein in
rice, which is transported from the phloem to shoot ap-
ical cells and promotes lateral branching (Zhao et al.
2015). The rcn1 mutant displays monoculm phenotype
and the responsible gene OsABCG5 encodes an ATP-
binding cassette protein required for rice shoot branch-
ing (Yasuno et al. 2009).
Fast-growing next-generation sequencing (NGS) tech-

nology has become a cheaper solution for genotyping,
which makes it possible to use high-throughput single

nucleotide polymorphism (SNP) markers to perform
GWAS (Liu & Yan 2019). Many genes controlling im-
portant agronomic traits have been identified using this
method in recent years, such as OsSPL13 controlling rice
grain size (Si et al. 2016), OsNPF6.1 associated with ni-
trogen use efficiency in rice (Tang et al. 2019), ZmVPP1
contributing to drought tolerance in maize (Wang et al.
2016), and ZmFBL41 conferring banded leaf and sheath
blight resistance in maize (Li et al. 2019). As an essential
yield-related trait, rice TN has also been studied by
GWAS. A previous study on 14 agronomic traits had
identified eight loci associated with TN, distributing on
chromosome 1, 2, 4 and 10 (Huang et al. 2010). In an-
other study on 15 agronomic traits using a high-
throughput phenotyping facility, an F-box gene OsFBL20
controlling TN was identified (Yang et al. 2014). A re-
cent GWAS identified 15 novel loci associated with TN
variations, and five candidate genes were validated (Jiang
et al. 2019). Another study based on TN data in different
stages revealed that dynamic change in TN played a key
role in determination of panicle number and identified a
new gene OsSAUR27 associated with TN (Ma et al.
2020).
Most genes regulating rice tillering have been cloned

from high- or low-tillering mutants which are rarely
used as rice breeding materials. However, ETN is a com-
plex trait with a relatively low heritability and contrib-
uted by multiple QTLs (Liu et al. 2010). Therefore, in
order to clone rice tillering genes potentially used by
breeders, more QTLs need to be identified from the nat-
ural rice population. In this study, we performed GWAS
based on ETN data of a panel of 490 rice accessions
grown in two locations, and the objectives are as follows:
(1) feasibility analysis of mining ETN genes by GWAS;
(2) identify novel genes affecting ETN; (3) probe favor-
able alleles of ETN-associated genes.

Methods
Plant Materials
The 490 rice accessions used in this study were derived
from the 3000 Rice Genomes Project (Wang et al. 2018).
Information of these rice accessions was shown in Add-
itional file 1: Table S1.

Phenotyping Analysis
For the field experiments, rice seeds were submerged in
clean water at 37 °C for 48 h and transferred to nursery
bed for germination. One-month-old seedlings were
then transplanted into the paddy field at density of 16
cm × 20 cm and one plant per hill. A completely ran-
domized block design with three replicates was per-
formed. Six plants in the middle of every row were
selected for evaluation of ETN with effective tiller being
defined as the one bearing more than 10 seeds at
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maturity stage. The mean value of three replicates was
used for analysis. The field experiment was performed in
two different years and locations: (1) June to November
2017, Fengcheng city, Jiangxi (JX) Province, China
(28°15′N, 115°77′E); (2) December 2017 to April 2018,
Sanya city, Hainan (HN) Province, China (18°25′N,
109°51′E). Broad-sense heritability (H2) was calculated
based on the following formular: H 2 = VG/(VG + VE) ,
where VG and VE are genetic and environmental
variances.

Genotyping Data and SNP Filtering
The raw genotype data of the 490 accessions were ob-
tained from the Rice SNP-Seek Database (https://snp-
seek.irri.org/) (Alexandrov et al. 2015). A total of 5,877,
569, 4,542,091 and 4,995,512 cleaned SNPs were called
in the whole, indica and non-indica (nonind) population,
respectively. SNPs were filtered utilizing the software
PLINK (Purcell et al. 2007) with missing rate < 40% and
minor allele frequency (MAF) > 0.05.

Population Structure and Phylogenetic Analysis
The software ADMIXTURE 1.3 (Alexander et al. 2009)
was used to calculate the population structure. A total of
394,572 SNPs pruned by PLINK with r2 > 0.3 were used
for the analysis. The ancestral population number (K)
was assumed ranging from 2 to 6. Principal component
analysis (PCA) was performed using PLINK and plotted
with R ‘ggplot2’ package (Wickham. 2016). The FastTree
software (Price et al. 2009) was used to construct the
phylogenetic tree based on the approximately
maximum-likelihood method, and the generated Newick
file was then visualized on the iTOL website (https://itol.
embl.de/) (Letunic & Bork. 2019).

GWAS and Linkage Disequilibrium (LD) Analysis
GWAS was performed with EMMAX program (Kang
et al. 2010). Briefly, we first used PLINK to get the geno-
type file, and the ETN phenotype data were collected
from two locations, Jiangxi and Hainan. The genotype
and phenotype file, as well as the Balding-Nichols kin-
ship matrix were used to fit the mixed linear model in
EMMAX. The Manhattan and quantile-quantile (Q-Q)
plots were generated using the R package “qqman”
(Turner. 2018). The pairwise linkage disequilibrium (LD)
(r2) was calculated using PopLDdecay software (Zhang
et al. 2019). The Pairwise r2 was calculated for the SNPs
in 500 kb and averaged in 1 kb across the whole genome.
The LD decay rate was measured as the chromosomal
distance at which the average pairwise correlation coeffi-
cient (r2) decreased to half of its maximum value (Huang
et al. 2010). The regional Manhattan plot and LD heat-
map were obtained using LDBlockShow software (Dong
et al. 2020).

Haplotype Analysis
The haplotypes of candidate genes were classified using
SNPs and InDels (insertion and deletion) in the pro-
moter (2 kb upstream of ATG) and untranslated region
(UTR), as well as non-synonymous SNPs in the coding
sequence (CDS). Haplotypes with more than 10 acces-
sions were retained to perform one-way variance analysis
(ANOVA) in R. Multiple comparisons were conducted
using R package “agricolae”.

Resequencing of OsPILS6b
Genomic DNA of 28 accessions (Additional file 1: Table
S1) was extracted using standard CTAB method (Doyle
1987), and the 5.9 kb full-length sequence for the
OsPILS6b gene (including 2.5 kb upstream of ATG) was
amplified with high-fidelity DNA polymerase KOD FX
(TOYOBO, KFX-101) using the following primers,
PILS6bF: CAGTCAAGCATCTCACCCTTT, PILS6bR:
AGCCGATTGGTTTAT ACTGGA. PCR product was
sequenced directly by the Beijing Genomics Institute.
Multiple sequence alignment was performed using
MEGA X (Sudhir et al. 2018).

Reverse Transcription Quantitative-PCR Analysis
Eight, twelve, and eight accessions representing three
different haplotypes of OsPILS6b were selected from the
490 rice panel (Additional file 1: Table S1), respectively.
Shoot bases (about 0.5 cm) of 10-day-old rice seedlings
were used for total RNA isolation using TRIzol reagent
(Invitrogen). One μg of RNA was treated with DNase I
(TAKARA) and then used for cDNA synthesis (TAKA
RA) according to the manufacturer’s instructions. The
rice OsActin1 gene (LOC_Os03g50885) was used as an
internal control. The reverse transcription quantitative-
PCR (RT-qPCR) primers used for OsActin1 and
OsPILS6b were as follows: F1: TCCATCTTGGCATCTC
TCAG, R1: GGTACCCTCATCAGGCATCT; F2: ACCT
TTGACAGCTGCGATGA, R2: ATAGCAGGGGCTCT
TCCTCA. The qRT-PCR was performed on an ABI
Prism 7500 instrument (Applied Biosystems) and relative
gene expression level was calculated using the 2-ΔΔCT

method (Livak & Schmittgen 2001).

Results
Population Structure and ETN Variation of the 490 Rice
Accessions
The 490 rice accessions consist of 235 Indica, 194 Japon-
ica, 45 Aus, 11 Admixture (Admix) and 5 Basmati (Bas),
according to the K9_group_Admixture (Wang et al.
2018) (Additional file 1: Table S1). Due to the smaller
population size compared with that of Indica, for the
follow-up analysis, Japonica, Aus, Admix and Bas were
combined into one group named as non-indica (nonind).
Phylogenic tree (Fig. 1a) and population structure
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analysis (Fig. 1c, Additional file 5: Fig. S1a) demonstrate
that these two subpopulations were distinguishable ac-
cording to their genotype, which was also supported by re-
sult of PCA analysis (Fig. 1b). Linkage disequilibrium (LD)
analysis showed the LD decay rate was higher in indica
than nonind (Additional file 5: Fig. S1b), consistent with
previous studies (Huang et al. 2010; Wang et al. 2018).
This panel of 490 rice accessions was grown in sum-

mer 2017 in Jiangxi Province (JX) and winter 2017 in
Hainan Province (HN), respectively. ETN variation was
quite abundant in our population, ranging from 4.8 to
30 and 3.4 to 20.7 in JX and HN, respectively. Overall,
indica accessions showed more ETN and wider ETN
range than nonind accessions, similar to the trend ob-
served in a previous study (Ma et al. 2020). The results
also showed that both indica and nonind accessions had
more tillers in JX than in HN (Fig. 1d). We speculated
that the short daylight condition in winter in HN pro-
motes flowering and restrains the vegetative growth and
tillering in rice. Despite the dramatic environmental
difference, ETN in these two locations were slightly
correlated, with a correlation coefficient of R2 = 0.45.
Broad-sense heritability (H2) of ETN was 0.58, consistent
with a previous study (Liu et al. 2010). The relatively low
heritability indicates that besides genetic factors,
environmental factors also play a critical role in ETN
variation.

Overview of QTLs Associated with ETN Detected by GWAS
As mentioned above, both the population and the loca-
tion have significant effect on ETN. Therefore, to ex-
clude effect of population structure and environments,
we performed six GWAS assays depending on the loca-
tion and subpopulation, i.e., the whole, indica and non-
ind populations in JX and HN, respectively. As reported
previously, a QTL was called when there were at least
two significant SNPs (P ≤ 10E-5) within 200-kb range
(Jiang et al. 2019), and the region of a specific QTL was
defined as 300 kb flanking the lead SNP (SNP with the
lowest P value in a cluster) (Guo et al. 2020). By this
standard, a total of 38 ETN-associated QTLs were iden-
tified (Fig. 2), among which 7 QTLs were detected by
two or three GWAS assays. Detailed information of
these QTLs was listed in Additional file 2: Table S2. A
total of 1134 genes are located in these regions.

Colocalization of ETN-Associated QTLs with Previously
Reported Rice Tillering Genes
To evaluate the reliability of our GWAS results, we ex-
amined whether the detected ETN-associated QTLs
could colocalize with some known genes involved in rice
tillering. First, we targeted ETN7–3, which was detected
in three GWAS assays (JX_whole, HN_whole, and HN_
nonind) and showed the most remarkable signal (Fig. 2).
Fortunately, the OsAAP1 gene encoding an amino acid

Fig. 1 Population structure and ETN variation of 490 rice accessions. (a) Phylogenetic tree constructed using LD-pruned SNPs. (b) PCA plots for
the first two components of 490 rice accessions. (c) Population structure determined by ADMIXTURE. Ancestral population number (K) ranged
from two to six. (d) ETN variation of two subpopulations in two locations. Boxplot described ETN distribution of one subpopulation in one
location, and each dot around the boxplot represent ETN value of one accession. ETN, effective tiller number; JX, Jiangxi province; HN, Hainan
province. Different letters denote significant differences (P < 0.05) based on Duncan’s multiple-range test
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Fig. 2 Manhattan plots and quantile-quantile (Q-Q) plots of six GWAS assays. (a) GWAS assays for the whole, indica and nonind population using
ETN data in Jiangxi, (b) GWAS assays for whole, indica and nonind population using ETN data in Hainan. Some candidate genes are indicated
using arrow heads
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transporter which has recently been reported to affect
TN, is located in this region. Overexpression lines of
OsAAP1 showed enhanced TN, whereas RNAi lines
showed opposite phenotypes (Ji et al. 2020). OsAAP1
was located around 102 kb downstream of the peak SNP
(rs7_1692807) of ETN7–3. Therefore, we called all the
SNPs within 141-kb region flanking OsAAP1 and

investigated the linkage disequilibrium (LD) of OsAAP1
in the 490 rice accessions panel. The LD heatmap
showed that OsAAP1 is located in a region with rela-
tively high LD (Fig. 3a). Next, we analyzed the haplotype
of OsAAP1 in both indica and nonind subpopulations.
In total, we identified six non-synonymous SNPs in the
coding sequence (CDS) (Fig. 3b). Based on these

Fig. 3 Associated region and haplotype analysis of OsAAP1 and DWL2. (a, d) Regional Manhattan plots and LD heatmap of OsAAP1 (a) and DWL2
(d). The single red dot above the red line denotes the lead SNP, the red dots under the red line and the blue triangle in the LD heatmap denote
the genomic region of candidate genes. (b, e) Gene structure and marker information of OsAAP1 (b) and DWL2 (e). Arrow heads indicate the
direction of gene transcription. (c, f) Haplotype analysis of OsAAP1 (c) and DWL2 (f). Boxplot described ETN distribution of one subpopulation
with one haplotype, and each red dot around the boxplot represents ETN value of one accession. The gray dotted-lines denote average ETN of
one subgroup. Different letters denote significant differences (P < 0.05) based on Duncan’s multiple-range test
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variants, we identified 5 haplotypes of OsAAP1. The
indica and nonind subgroup have three different major
haplotypes, respectively, and Hap2 is present as a major
haplotype in both subgroup. In agreement with the fact
that OsAAP1 was detected in nonind rather than indica
subgroup, there seems no much difference in ETN
among the three major haplotypes (Hap2, 3, 4) in indica
subgroup. However, the ETN varies significantly among
the three major haplotypes (Hap1, 2 and 5) in nonind
subgroup, with Hap5 showing the highest ETN in both
JX and HN (Fig. 3c). Therefore, Hap5 is a favorable al-
lele for ETN and introducing this Hap5 allele of OsAAP1
into other cultivars may contribute to an increase of
ETN.
Another noticeable signal was ETN5–5, which was

also detected by both nonind subpopulation and the
whole population (HN_nonind and HN_whole) (Fig. 2b).
A WUSCHEL-related homeobox (WOX) transcription
factor gene DWT1-LIKE2 (DWL2) was thought to be the
candidate. The previous report has shown that DWARF
TILLER 1 (DWT1), a WOX transcription factor, act as a
positive regulator of tiller growth (Wang et al. 2014) and
a DWT1 homolog DWL2 shares partial functional re-
dundancy with DWT1 in controlling uniform growth of
rice tillers and main shoot (Fang et al. 2020). DWL2 was
located 38 kb downstream of the lead SNP (rs5_
28062171). LD heatmap showed a moderate LD level
around the DWL2 gene (Fig. 3d). A total of 12 SNPs
were detected in the promoter region, while no non-
synonymous SNP or InDel was found in CDS (Fig. 3e).
Haplotype analysis revealed that Hap3 and Hap6 are fa-
vorable alleles for ETN and preferentially exist in nonind
subgroup (Fig. 3f). Like OsAAP1, these two alleles of
DWL2 from nonind subgroup may also be useful for en-
hancement of ETN when introduced to Indica cultivars.
Within the QTL ETN4–5 detected in JX_nonind

population (Fig. 2a), we identified the Narrow Leaf1
(NAL1) gene, which was initially cloned from a loss-of-
function mutant showing narrow leaf and increased TN
(Qi et al. 2008; Jiang et al. 2015). We identified a non-
synonymous SNP that was previously reported to be as-
sociated with panicle number (Yano et al. 2016) (Fig. 4b).
The results demonstrated that Hap2 with G allele
showed more ETN than Hap1 with A allele in both
indica and nonind subgroup (Fig. 4c). Furthermore, this
SNP was also identified in a major QTL LSCHL4 from
Japonica cultivar, which can increase grain yield when
introduced into the Indica super rice variety 93–11
(Zhang et al. 2014).
Within the QTL ETN9–3 detected in the JX_whole

population (Fig. 2a), the OsWRKY74 gene encoding a
WRKY transcription factor was identified. OsWRKY74
was involved in tolerance of phosphate starvation, whose
overexpression led to a 24% increase in TN (Dai et al.

2015). Six SNPs and one InDel were found in the pro-
moter region, and one non-synonymous SNP was found
in CDS (Fig. 4e). There are five haplotypes in total for
OsWRKY74, among which Hap3 is the favorable allele
for indica subgroup, whereas Hap3 and Hap4 are favor-
able alleles for nonind subgroup (Fig. 4f). The colocaliza-
tion analysis above suggested that our GWAS results
were reliable because several previously reported TN-
associated genes were identified in this study.
Next, we carried out an in silico analysis of the pyra-

miding effect of the favorable alleles of the above four
genes on ETN. Among the nonind subgroup, 34, 42, 78
and 39 accessions harbor Hap5 of OsAAP1, Hap3/6 of
DWL2, Hap2 of NAL1, Hap3/4 of WRKY74, respectively.
Interestingly, there are 18 accessions harboring favorable
alleles of all the four genes (Additional file 5: Fig. S2a),
which showed more ETN compared with accessions
with favorable allele of only one gene. Pyramiding favor-
able alleles of four genes led to 60.2% and 56.5% increase
in ETN compared with the average ETN of nonind sub-
group in Jiangxi and Hainan (Additional file 5: Fig. S2 b,
c), respectively.

Identification of Novel ETN-Associated QTLs
We aimed to identify novel ETN-associated QTLs in
two ways. One is mining genes homologous to known
tillering-related genes, and another is mining genes in-
volved in plant hormone synthesis or signal transduc-
tion, including SL, auxin, cytokinin and GA. In total, we
identified 25 novel candidate genes that may be related
to ETN. Among them, 10 genes are involved in auxin
synthesis or signal transduction, three genes participate
in cytokinin synthesis, two genes participate in caroten-
oids synthesis, one gene participates in GA signal trans-
duction (Yamaguchi et al. 2008), two genes encode
ammonium transporter, two genes encode peptides/
amino acid transporter and five genes encode sugar/glu-
cose transporter. Detailed information of these 25 genes
is listed in Additional file 2: Table S2.
Among the 25 novel candidate genes, we selected the

OsPILS6b gene (LOC_Os05g40330) for further analysis,
which encodes an auxin efflux carrier protein. Several
members of this gene family have been reported to affect
rice tillering, including OsPIN2 (Chen et al. 2012),
OsPIN5b (Lu et al. 2015a) and OsPIN9 (Hou et al. 2021).
LD analysis showed that OsPILS6b located in a relatively
high LD region (Fig. 5a). A total of 8 sequence variations
were identified in OsPILS6b, including five SNPs and
one InDel in the promoter region, one non-synonymous
SNP in CDS, and one SNP in 3′-UTR (Fig. 5b). Based
on these variations, three haplotypes were identified.
The indica subgroup has only one haplotype (Hap3)
while the nonind subgroup has all the three haplotypes.
Interestingly, most nonind accessions were found in
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Hap2 and had relatively low ETN (Fig. 5c). Considering
the fact that overexpression of OsPIN2 and OsPIN9 have
been reported to increase tiller number (Chen et al.
2012; Hou et al. 2021), we detected the OsPILS6b ex-
pression levels in accessions with different haplotypes.
As expected, accessions with Hap2 had lower expression
levels in OsPILS6b than those with Hap1 and Hap3 (Fig.

5d), indicating that the expression level of OsPILS6b is
indeed associated with rice tillering.
To find out the causative variation for the lower ex-

pression in OsPILS6b in accessions with Hap2, we rese-
quenced the OsPILS6b genomic region of the 28
accessions used for RT-qPCR, including 2.5 kb upstream
of the start codon ATG. The result showed that besides

Fig. 4 Associated region and haplotype analysis of NAL1 and OsWRKY74. (a, d) Regional Manhattan plots and LD heatmap of NAL1 (a) and
OsWRKY7 (c). The single red dot above the red line denotes the lead SNP, the red dots under the red line and the blue triangle in the LD
heatmap denote the genomic region of candidate genes. (b, e) Gene structure and marker information of NAL1 (b) and OsWRKY74 (e). Arrow
heads indicate the direction of gene transcription. (c, f) Haplotype analysis of OsAAP1 (c) and OsWRKY74 (f). Boxplot described ETN distribution of
one subpopulation with one haplotype, and each red dot around the boxplot represents ETN value of one accession. The gray dotted-lines
denote average ETN of one subgroup. Different letters denote significant differences (P < 0.05) based on Duncan’s multiple-range test
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the variations described above, two SNPs and one 3-bp
InDel specific for Hap2 were detected in the promoter
region of OsPILS6b (Fig. 5b). We suppose these varia-
tions affect the regulation activity of some transcription
factors (TF), thus affect the OsPILS6b gene expression.
Therefore, we extracted the 100 bp flanking sequence
(50 bp upstream and 50 bp downstream) of the three
variation and predicted the TF binding sites using the
online tool PlantRegMap (https://plantregmap.gao-lab.
org/) (Tian et al. 2020). A total of 5, 3 and 261 potential
binding sites were located in the flanking sequences of
two SNPs and the 3-bp InDel (Additional file 4: Table
S4). Notably, it seems that the sequence near the 3-bp
InDel is a binding hotspot for multiple transcription fac-
tors. Thus we speculate that this InDel is most likely the
responsible site for the different expression levels of
OsPILS6b among the three halplotypes.

Temporal Expression Pattern of ETN-Associated Genes
A recent study reported that most tillering-related genes
showed a special spatio-temporal expression pattern
during the whole growth period. Their expression in
root at 00:00 (R0) and 12:00 (R12) are steadily high from
20 days after transplanting (DAT) to 48 DAT and then
decrease after 48 DAT (Ma et al. 2020). This pattern

may genetically explain the steady transition from tiller
development to panicle development. Enlighted by this,
we investigated the temporal expression pattern of the
ETN-associated genes identified in this study. We did
expression clustering analysis using the expression data
of root collected at 00:00 (R0) and 12:00 (R12) with
weekly interval during the whole growth period from
RiceXPro website (http://ricexpro.dna.affrc.go.jp/) (Sato
et al. 2011). As expected, among the 27 genes with ex-
pression data available in RiceXPro (Additional file 3:
Table S3), 17 and 20 genes showed a higher expression
from 21 DAT to 49 DAT in R0 and R12, respectively
(Fig. 6). This expression pattern coincides with the dy-
namic change pattern of tiller number during the whole
growth period where tiller number increases rapidly
from 21 DAT and reaches the peak at 49 DAT (Liu
et al. 2018; Liu et al. 2021). The decreased expression of
ETN-associated genes after 49 DAT may contribute to
the transition from vegetative to reproductive growth of
tillers and panicle development on tillers.

Discussion
GWAS Is a Feasible Way to Mine ETN-Associated QTL
ETN directly determines rice grain yield. Most of the
previous studies on ETN were based on classical QTL

Fig. 5 Haplotype and transcription analysis of OsPILS6b. (a) Regional Manhattan plots and LD heatmap of OsPILS6b. (b) Gene structure and SNP
information of OsPILS6b. Red characters marked the specific variations for Hap2. The 14-bp deletion in Hap3 is AAAATGGCGGATTG. (c) Haplotype
analysis of OsPILS6b. Boxplot described ETN distribution of one subpopulation with one haplotype, and each red dot around the boxplot
represents ETN value of one accession. The gray dotted-lines denote average ETN of one subgroup. Different letters denote significant differences
(P < 0.05) based on Duncan’s multiple-range test. (d) The relative expression level of OsPILS6b in plants with different haplotypes. Red lines
represent the average expression level of accessions with three haplotypes, respectively. “ZYx” is the field number and the detailed information
was listed in Additional file 1: Table S1. Data are mean ± SEM, ** means Student’s t-test, P < 0.01
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mapping using biparental populations (Xu and Shen
1991; Wu et al. 1999; Yang et al. 2006; Liu et al. 2010),
and few of these QTLs were cloned actually. Traditional
QTL mapping can only exploit genetic variations in two
parents. However, GWAS can take advantage of exten-
sive variations in numerous natural population (Wang
et al. 2020b). Using a panel of 490 rice accessions se-
lected from the 3000 rice genomes project (Wang et al.
2018) and millions of SNPs derived from the same pro-
ject, we performed GWAS of ETN in two locations. We
identified 38 ETN-associated QTLs and found that 1134
genes located in these QTL regions. A recent study on
transcriptional regulation of strigolactone signaling in
Arabidopsis revealed that genes involved in microtubule
function were up-regulated whereas auxin-inducible
genes were down-regulated after GR24 treatment for 2 h
(Wang et al. 2020a). Among the 1134 genes identified
from our GWAS results, three genes are involved in
microtubule function. LOC_Os04g58130 (OsKTN80b)
encodes a katanin protein showing microtubule-severing
activity, LOC_Os05g02670 encodes a kinesin protein in-
volved in microtubule-based movement, and LOC_
Os09g27700 encodes a microtubule-associated protein
(MAP65/ASE1). Besides, 10 genes associated with auxin
synthesis or signal transduction pathways were detected
(Additional file 2: Table S2), consistent with the fact that
plant hormone synthesis or signal transduction have a
significant impact on rice tillering. These results hinted
that genes detected from our GWAS results potentially
play a role in rice tillering regulation.
Some other identified genes are also involved in plant

hormones or homologous to known tillering-related
genes. For instance, LOC_Os06g50040 (OsSAUR29) and

LOC_Os12g41600 (OsSAUR57), two small auxin-up
RNA genes, are homologues of SAUR39 and SAUR27
which have a negative effect on rice tillering (Kant et al.
2009; Ma et al. 2020). LOC_Os07g10490 (ZDS2) encodes
a zeta-carotene desaturase involved in the biosynthesis
of carotenoids, the precursor of the plant hormone stri-
golactone. Indeed, genes involved in carotenoids biosyn-
thesis have been reported to regulate rice tillering via
the carotenoid-dependent strigolactone biosynthesis,
such as the MIT1 gene encoding 15-cis-ζ-carotene isom-
erase (Z-ISO) (Liu et al. 2020; Zhou et al. 2021; Liu et al.
2021) and the MIT3 gene encoding carotenoid isomerase
(CRTISO) (Liu et al. 2018). LOC_Os02g09810 encodes
an amino acid transporter-like protein, and four mem-
bers of this gene family i.e., OsAAP1 (Ji et al. 2020),
OsAAP3 (Lu et al. 2018), OsAAP4 (Fang et al. 2021) and
OsAAP5 (Wang et al. 2019) have been known to affect
tillering.

ETN-Associated QTLs Have Potential for Molecular
Breeding
We detected four genes previously reported to be associ-
ated with ETN, i.e., OsAAP1, DWL2, NAL1, and
OsWRKY74. Haplotype analysis revealed that these genes
showed different haplotype patterns in the two subpopu-
lations and different ETN variation among haplotypes.
Among the four genes, a favorable allele of NAL1 from
japonica has already been used to improve yield in mod-
ern indica cultivars (Zhang et al. 2014; Fujita et al.
2013). As to the other three genes, there is no report
about their breeding value yet. However, our results
showed that Hap5 of OsAAP1, Hap3 and Hap6 of
DWL2, Hap3 and Hap4 of WRKY74 are favorable alleles

Fig. 6 Temporal expression pattern of ETN-associated genes during the whole growth period. Expression data in root at 00:00 (a) and 12:00 (b)
were downloaded from RiceXPro website (https://ricexpro.dna.affrc.go.jp/). The heatmaps represented hierarchical clustering of relative expression
levels of 27 candidate genes at different days after transplanting (DAT). The scale for relative expression levels (after normalized by z-score) is
denoted by color bars, with red representing the high expression levels, white medium expression and blue low expression
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for ETN (Fig. 3 and Fig. 4), and the 18 accessions har-
boring favorable alleles of all these four genes showed an
apparent increase in ETN (Additional file 5: Fig. S2), in-
dicating that pyramiding multiple favorable alleles may
contribute to high ETN.
Besides the four known genes, we identified 25 novel

genes that may also affect ETN, and the OsPILS6b gene
encoding a PIN family member was selected for prelimin-
ary validation through RT-qPCR. Accessions with Hap1
and Hap3 generally have higher ETN than accessions with
Hap2. Interestingly, the expression levels of OsPILS6b
were also higher in accessions with Hap1 and Hap3 than
those with Hap2 (Fig. 5). This result is consistent with
previous findings that OsPIN2 and OsPIN9, two homologs
of OsPILS6b, contribute positively to tillering (Chen et al.
2012; Hou et al. 2021). Moreover, using the public expres-
sion data from RiceXpro website, we identified a common
spatio-temporal expression pattern for ETN-associated
genes, which showed a relatively higher expression from
21 DAT to 49 DAT in root and decreased after that (Fig.
6). This expression pattern coincides with the dynamic
change pattern of tiller number during the whole growth
period (Liu et al. 2018; Liu et al. 2021). We also analyzed
the haplotypes of some other genes, including LOC_
Os07g10490 (ZDS2), LOC_Os06g39590 (OsIAA23), LOC_
Os06g50040 (OsSAUR29) and LOC_Os12g41600
(OsSAUR57) (Additional file 5: Fig. S3). A total of 5, 9, 11,
8 haplotypes were identified for these four genes, respect-
ively. In addition, these four genes displayed different
haplotype patterns between the indica and nonind sub-
population, indicating that some of the ETN-associated
genes differentiated after the differentiation of japonica
and indica subspecies. These results enlighten us to fur-
ther mine the favorable alleles in natural resources which
can be used for in rice breeding for high ETN.

Conclusions
In this study, we identified 38 ETN-associated QTLs
through GWAS using a panel of 490 rice accessions.
Four QTLs were colocalized with known genes involved
in tillering regulation, and 25 novel genes located in
these QTL regions were related to plant hormones or
homologous to other ETN-associated genes. The favor-
able alleles mined with GWAS have potential value in
rice molecular breeding for high ETN.
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