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Abstract

Backgrounds: Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory
properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-
BINDING PROTEING (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed
to be involved in B-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza
sativa) was investigated.

Results: Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with
reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase
in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative
transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to
oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase
activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbpé. Taken
together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-
dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice
displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-
CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in
the transcriptome and an increase in jasmonic acid level occurred in osacbpé.

Conclusions: In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of
OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-

CoAs content with defense responses.

oxygen species
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Background

The primary role of acyl-coenzyme A (CoA) esters is
to act as intermediates in lipid synthesis and break-
down (Neess et al. 2015). De novo synthesized fatty
acids in the chloroplasts are transferred in the form
of C16:0-CoA and C18:1-CoA to the endoplasmic
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reticulum (ER) for phospholipid and triacylglycerol
(TAG) synthesis (Li-Beisson et al. 2013). In seeds follow-
ing imbibition, TAG is rapidly mobilized to support suc-
cessful germination and seedling establishment via a series
of catabolic pathways (Graham 2008; Li-Beisson et al.
2013). Rapid TAG turnover also occurred in vegetative tis-
sues (Kelly et al. 2013). First, TAG is hydrolyzed by lipases
to free fatty acids, followed by activation to CoA esters
(Li-Beisson et al. 2013). Subsequently, fatty acyl-CoAs are
imported into the peroxisomes by the peroxisomal ATP-
binding cassette (ABC) transporter protein COMATOSE
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(CTS)/PEROXISOME DEFECTIVE 3 (PED3)/PEROXI-
SOMAL ABC TRANSPORTER 1 (PXA1l), which pos-
sesses thioesterase activity that hydrolyzes fatty acyl-CoAs
to free fatty acids and CoA as part of the transport process
(De Marcos et al. 2013). Once inside the peroxisome, the
formation of long-chain acyl-CoA esters is catalyzed by
long-chain acyl-CoA synthetase (Li-Beisson et al. 2013).
Following a series of enzymatic S-oxidation reactions by
acyl-CoA oxidases, multifunctional proteins, and thiolases,
fatty acids are degraded to acetyl-CoA for further use in
gluconeogenesis and respiration (Li-Beisson et al. 2013).

The intrinsic nature of acyl-CoA is amphipathic (Neess
et al. 2015). Although the cellular concentration of acyl-
CoAs ranges from several pM to several hundred puM, the
concentration of free unbound acyl-CoAs is unknown or
could be extremely low (Neess et al. 2015). Usually, acyl-
CoAs are bound to membrane lipids or proteins with high
affinities, so that the concentration is strictly controlled to
below the critical micelle concentration to avoid detergent
effects that disrupt the membrane (Neess et al. 2015). The
small (10-kD) acyl-CoA-binding proteins (ACBPs) are
known to bind acyl-CoA esters (Knudsen et al. 2000).
Each ACBP has a conserved acyl-CoA-binding domain
that allows the ACBPs to bind acyl-CoA esters, which can
then form a cellular acyl-CoA pool and protect acyl-CoAs
against hydrolysis (Du et al. 2016). Considering that
ACBPs bind acyl-CoAs with high affinities and broad lig-
and selectivity (C12-C26), ACBPs are believed to be the
predominant acyl-CoA carriers/transporters (Knudsen
et al. 2000; Neess et al. 2015; Lung and Chye 2016a, b;
Guo et al. 2017).

In plants, ACBPs are highly conserved throughout the
evolution of land plants and are divided into four classes
(Classes I-IV) based on domain architecture (Meng et al.
2011). The functions of Arabidopsis ACBPs (AtACBPs)
in development and stress responses have been exten-
sively investigated (Du et al. 2016; Lung and Chye
2016b, 2019). Much evidence indicates that AtACBPs
mediate multiple aspects of plant physiology by regulat-
ing lipid metabolism in Arabidopsis (Du et al. 2016;
Lung and Chye 2016b, 2019). There is only a single 10-
kD Class I ACBP member in Arabidopsis, namely
AtACBP6, and AtACBP6 has been reported to be a cyto-
solic protein (Chen et al. 2008). AtACBP1 and AtACBP2
are Class II paralogues of each other and have been
proposed to function in the ER in acyl-CoA pool forma-
tion and acyl-CoA/lipid trafficking between the plasma
membrane and the ER during early embryogenesis
(Chen et al. 2010). Furthermore, the overexpression of
AtACBP1 in Arabidopsis resulted in the accumulation of
phosphatidic acid (PA) during seed germination and
seedling development following abscisic acid (ABA)
treatment (Du et al. 2013). Similar PA accumulation in
AtACBP1 overexpressors occurred during freezing
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treatment (Du et al. 2010). The interaction between
AtACBP1 and phospholipase Dal (PLDal), a phospho-
lipase that generates PA, played an essential role in both
studies (Du et al. 2010; Du et al. 2013). In addition, the
interaction between AtACBP1 and STEROL C4-METH
YL OXIDASE1 (SMO1) regulated both fatty acid and
sterol homeostasis, and in turn modulated the expres-
sion of homeodomain-leucine zipper IV transcription
factors (TFs) (Lung et al. 2018). The overexpression of
another member, Class III AtACBP3, accelerated leaf
senescence increasing the acyl-CoA pool and phosphati-
dylethanolamine (PE) content (Xiao et al. 2010). The
variation in AtACBP3 level and PE composition between
AtACBP3-overexpressors and AtACBP3-knockout mu-
tants indicated that AtACBP3 binds and regulates PE
in vivo (Xiao et al. 2010). Furthermore, the recombinant
proteins of the three cytosolic AtACBPs, comprising
Class IV members (AtACBP4 and AtACBP5), and Class
I AtACBP6, were reported to bind C16:0-CoA, C18:1-
CoA, C18:2-CoA, and C18:3-CoA with different affinities
(Hsiao et al. 2014a). The double mutants and the triple
mutant of these three cytosolic AtACBPs were altered in
acyl-CoA composition and displayed high ABA sensitiv-
ity during seed germination (Hsiao et al. 2014a). The de-
crease in oil bodies and decline in germination rate of
acbp4acbpSacbp6 pollen suggested important roles for
the cytosolic AtACBPs in pollen lipid metabolism (Hsiao
et al. 2015).

Thus far, the functions of plant ACBPs have been
widely elucidated in the eudicots, such as Arabidopsis
and Brassica napus, although there have been many re-
ports on the characterization of ACBP family members
from other plant species, such as Oryza sativa, Agave
americana, Vernicia fordii, Vitis vinifera, Helianthus
annuus, Gossypium hirsutum, Jatropha curcas, and
Elaeis guineensis (Du et al. 2016; Raboanatahiry et al.
2018; Liao et al. 2019; Amiruddin et al. 2020). Other
than Arabidopsis and Brassica napus, the functions of
ACBPs from other plant species have been mostly inves-
tigated using transgenic Arabidopsis (Takato et al. 2013;
Meng et al. 2014; Panthapulakkal Narayanan et al. 2019).
Previously, we have reported a peroxisome-localized rice
Class IV ACBP, OsACBP6, which is currently the only
plant ACBP identified to be localized at the peroxisome
(Meng et al. 2014). The overexpression of OsACBP6 in
the Arabidopsis -oxidation-deficient mutant pxal res-
cued indole-3-butyric acid (IBA) sensitivity and jasmonic
acid (JA) production after wound treatment, suggesting
that OsACBP6 may be involved in peroxisomal j-oxida-
tion (Meng et al. 2014). In this study to investigate the
function of the peroxisomal OsACBP6 in rice, we ana-
lyzed a T-DNA insertional mutant of OsACBP6
(osacbp6) that demonstrated its reduction in root meri-
stem activity and leaf growth. The results from
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comprehensive acyl-CoA and lipid profiling indicated
that disruption of OsACBP6 compromised the mainten-
ance of the acyl-CoA pool and altered lipid composition
in leaves. By comparative transcriptomic analysis of the
shoots/leaves and roots from various growth stages,
differentially-expressed genes were identified in osacbpé.
Gene ontology (GO) enrichment analysis and functional
classification provided insights into the function of
OsACBP6 in the oxidative stress response. Accumula-
tion of reactive oxygen species (ROS) and elevation of
the JA was evident in osacbp6.

Results

The Rice osacbp6 Mutant Displayed Growth Retardation
DNA sequence analysis of the osacbp6 mutant indicated
that the T-DNA had inserted into the 11th exon of
OsACBP6 as shown in Fig. 1a. The location of the T-
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DNA insertion in OsACBP6 was confirmed by PCR
using a combination of gene-specific primers, ML2066,
and ML2067, as well as T-DNA left border primers
2717LB and ML2067 (Fig. 1b). Semiquantitative RT-PCR
using gene-specific primers ML1050 and ML1051 con-
firmed the absence of OsACBP6 expression in the mu-
tant (Fig. 1c). The homozygous osacbp6 line was then
used in subsequent experiments.

As OsACBP6 had been proposed to play a role in fatty
acid -oxidation through its acyl-CoA binding ability
(Meng et al. 2014), osacbp6 was examined for the typical
phenotypes related to defects in S-oxidation. When
osacbp6 and the wild type were tested in seed germin-
ation and seedling establishment in water, both germi-
nated at about the same time but the development of
the roots of osacbp6 seedlings was repressed with pri-
mary root reduction around 40% (Fig. 1d and e). When
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Fig. 1 Characterization of the rice osacbp6 mutant. a T-DNA insertion in OsACBP6, and primer locations used for PCR genotyping. Black and grey
boxes indicate coding and untranslated regions, respectively. b PCR genotyping of osacbp6. Primer combinations ML2066/ML2067 (top gel) and
2717LB/ML2067 (bottom gel) in PCR to identify osacbp6 homozygous mutant. ¢ Semi-quantitative RT-PCR showing the knockout of OsACBP6 in
osacbp6. ACTINT served as a control. d Growth of wild type (WT, Oryza sativa var. japonica cv. Dongjin) and osacbp6. Images from left to right
represent 5-, 7-day-old seedlings grown in water, and 21-day-old soil-grown seedling. Bars, 1 cm. @ The primary root length (left) and shoot
length (right) comparison between WT and osacbpé. Primary root reduction of osacbpé is shown in the middle. Values are mean +SD (n=25). f
Comparison of the leaf length of 21-day-old soil-grown seedlings between WT and osacbpé. Values are mean + SD (n = 5). Asterisks indicate
significant differences between WT and osacbpé as evaluated by Student’s t-tests: ***P < 0.001
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osacbp6 and the wild type were grown in soil, osacbp6
root development was retarded (around 30% primary root
reduction), but not as severe as previously observed in
water (Fig. S1). In both situations, there was no obvious
difference in the length of the shoots between osacbp6
and the wild type at the early stage of the seedling devel-
opment (Fig. le, Fig. S1b). However, the leaf length of 21-
day-old osacbp6 was significantly shorter than the wild
type with a reduction of around 25% (Fig. 1d and f). Fur-
thermore, osacbp6 grains were reduced in length but
remained unchanged in width in comparison to the wild
type (Fig. S2a). Lastly, given that the product of IBA 5-oxi-
dation is indole-3-acetic acid (IAA) which has growth in-
hibition effect, the IBA sensitivity of osacbp6 was
examined to investigate whether S-oxidation process was
blocked in osacbp6. Reduced primary root elongation of
osacbp6 after IBA treatment indicated that osacbp6 was
sensitive to growth inhibition by IBA (Fig. S2b), suggesting
the IBA S-oxidation was not blocked in osacbp6. Taken
together, from phenotypic observations it appears that /-
oxidation was not severely affected due to the loss in
OsACBP6.

When the osachp6 mutant was complemented, the
three independent complemented lines (designated as
osacbp6-C1, osacbp6-C2, and osacbp6-C4) displayed nor-
mal growth similar to the wild type, including the pri-
mary root length, 21-day-old leaf length, and grain
length (Fig. 2, Fig. S3). Moreover, the phenotype of seed-
lings from hemizygous complemented line osacbp6-C4
were examined. In contrast with wild type normal
growth of primary root and leaves, seedlings from hemi-
zygous complemented line contained both wild type
growth (168) and retarded growth (51) of roots and
leaves with a 3:1 segregation ratio (x> = 0.34). These find-
ings confirmed that growth arrest was caused by the loss
of OsACBPS6.

In addition, expression information from the Rice eFP
Browser (http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.
cgi) showed that OsACBP6 is highly expressed at seed-
ling roots, young leaf and mature leaf (Fig. S4), suggest-
ing OsACBP6 may have important roles in these tissues.
Therefore, the root meristem activity was further investi-
gated, 5-ethynyl-2’-deoxyuridine (EdU) staining indi-
cated that reduced EdU labeling was observed in the
root tip of osacbp6 but not in the complemented line
(Fig. 3a-d), indicating that cell proliferation in the root
meristem affected by the loss of OsACBP6 could be
complemented by the OsACBP6 ORF. On the other
hand, observation of leaf growth showed that the emer-
gence of the third leaf of osacbp6 was one day later than
the wild type. When the third leaf of osachbp6 emerged
from the leaf sheath, the third leaf length of the wild
type and the complemented line was about 6 cm longer
than osacbp6 (Fig. 3e). Meanwhile, the leaf elongation
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rate of osacbp6 was significantly lower than the wild type
and the complemented line (Fig. 3f). These results indi-
cated both root and the leaf development were affected
in the osachp6 mutant and function was restored upon
complementation.

Changes in Acyl-CoA and Lipid Profiles in osacbp6

To gain an insight into the relationship between the loss
of OsACBP6 and compromised growth, the acyl-CoA
profiles in osacbp6 was determined. The absence of
OsACBP6 function is expected to disrupt fatty acid S-
oxidation and result in the accumulation of long-chain
acyl-CoAs. To test this hypothesis, a comparison was
made amongst the acyl-CoA content in 21-day-old
leaves of osacbp6, the wild type and the complemented
line. As revealed in acyl-CoA measurements, the content
of acyl-CoAs in osacbp6 was significantly higher than
the wild type and complemented line (osacbp6-C4)
(Fig. 4a). Amongst all tested acyl-CoA esters, C18:3-CoA
was notably enriched in the leaves of 21-day-old osacbp6
in contrast to the wild type and osacbp6-C4 (Fig. 4b).
When compared with osacbp6, the level of C14:0-CoA,
C18:0-CoA and C18:1-CoA showed a decrease in
osacbp6-C4 (Fig. 4b). In contrast to wild type, C18:2-
CoA had significantly declined in osacbp6-C4 while C16:
0-CoA remained unchanged in all samples (Fig. 4b).
These findings indicate that loss of OsACBP6 had likely
compromised the maintenance of an acyl-CoA pool, par-
ticularly in the utilization of C18:3-CoA.

When the lipid composition of 21-day-old leaves was
compared amongst osacbp6, the wild type, and the com-
plemented line, few differences were apparent in all sam-
ples. The total amounts of membrane lipid species
analyzed including monogalactosyldiacylglycerol
(MGDQG), digalactosyldiacylglycerol (DGDG), phosphati-
dylglycerol (PG), phosphatidylcholine (PC), PE, PA,
phosphatidylserine (PS), and phosphatidylinositol (PI)
remained unchanged (Fig. 4c, Fig. S5). On the other
hand, in comparison with osacbp6, the total storage
lipids TAG content significantly declined in osacbp6-C4
(Fig. 4d, Dataset S1), although difference between the
wild type and osacbp6 was not significant. However, ana-
lysis of TAG molecular species revealed that TAG mole-
cules 52:4(18:1), 54:8(18:3), 54:8(18:2), 54:7(18:1), 54:
6(18:1), and 56:7(18:3) were significantly elevated in
osacbp6 in comparison with the wild type (Fig. 4e). In
contrast to osacbp6, the complemented line showed sig-
nificant decrease in TAG56 molecules 56:5(18:3), 56:
6(18:3) and 56:7(18:3), most of the TAG54 molecules
(54:9(18:3), 54:8(18:3), 54:8(18:2), 54:7(18:3), 54:7(18:2),
54:7(18:1), 54:6(18:3), 54:6(18:2), 54:6(18:1), 54:5(18:3),
54:5(18:2), 54:5(18:1), 54:4(18:3), 54:4(18:2), 54:4(18:1),
54:3(18:2)) and several TAG52 molecules (Dataset S1).
Meanwhile, the complemented line when compared with
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Student’s t-tests: ***P < 0.001. WT, Oryza sativa var. japonica cv. Dongjin

the wild type, exhibited lower amounts of TAG mole- Comparative Transcriptomic Analysis between osacbp6
cules 52:7(18:3), 52:5(16:0), 52:3(18:3), 52:3(18:2), 54: and the Wild Type

9(18:3), 54:8(18:2), 54:6(18:3), 56:6(18:3), and 56:5(18:3) To further analyze the potential role of OsACBP6 in
(Fig. 4e, Dataset S1). growth regulation, a comparative transcriptomic analysis
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was performed between osachp6 and the wild type at dif-
ferent growth stages (Dataset S2, S3, S4, S5, S6, S7). Dif-
ferentially expressed genes (DEGs) in osachp6 were
associated with primary metabolic processes, including
the light reaction, cell wall and lipid metabolism; and
secondary metabolic processes related to terpenes, flavo-
noids, and phenylpropanoids. In osacbp6, genes involved
in fatty acid synthesis and elongation, phospholipid syn-
thesis, and lipid degradation appeared to be affected
(Fig. S6). However, the key enzymes in f3-oxidation, such
as acyl-CoA oxidase, multifunctional protein, and 3-
ketoacyl-CoA thiolase were not differentially expressed
in osacbp6 (Fig. S6). Furthermore, most of the DEGs
were responsive to biotic stress (Fig. S7a). Compared
with the wild type, various categories related to biotic
stress were differentially expressed in osacbp6, including
plant hormone signaling, PR proteins, cell wall, proteoly-
sis, signaling, TFs, heat shock proteins, secondary me-
tabolites. DEGs associated with defense hormone (ABA,
JA, salicylic acid (SA), and ethylene) and growth hor-
mone (auxin, gibberellin (GA), brassinosteroid (BR) and
cytokinin) (Fig. S7b) and differentially expressed TFs

(Fig. S7c) are displayed in Dataset S8 and S9, respect-
ively. Amongst differentially expressed TFs, basic helix-
loop-helix (bHLH) was strongly activated in the young
seedlings, especially in 5-day-old roots (Fig. S7c). In 21-
day-old leaves, WRKY was more activated than in the
other samples (Fig. S7c).

Significantly enriched Gene Ontology (GO) categor-
ies were illustrated in Dataset S2. The GO term oxi-
dation reduction was the most enriched in young
seedlings and was common to all samples, except for
the lack of a significantly enriched GO term in 7-day-
old shoots. Another significantly enriched category
was a response to oxidative stress that was only evi-
dent in the downregulated DEGs, and solely consisted
of putative peroxidase precursor genes (class III per-
oxidase). Gene expression of peroxidases was verified
by quantitative real-time RT-PCR (qRT-PCR). In
comparison to the wild type, eight peroxidases were
downregulated in 7-day-old osacbp6 roots and
upregulated in the complemented line (Fig. 5a). In 7-
day-old shoots and 21-day-old leaves, the number of
differentially expressed peroxidase was lower than 7-
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***p < 0.001. FW, fresh weight; WT, Oryza sativa var. japonica cv. Dongjin. DAG, Diacylglycerol; TAG, Triacylglycerol; MGDG,
Monogalactosyldiacylglycerol; DGDG, Digalactosyldiacylglycerol; PC, Phosphatidylcholine; PG, Phosphatidylglycerol; PA, Phosphatidic acid; PI,
Phosphatidylinositol; PE, Phosphatidylethanolamine; PS, Phosphatidylserine

day-old roots. In particular, LOC_Os03g13180 and
LOC_0Os04¢59190 had decreased in osacbp6 in con-
trast to an increase in the complemented line in all
test samples (Fig. 5a). In addition, expression informa-
tion from the Rice eFP Browser (http://bar.utoronto.
ca/efprice/cgi-bin/efpWeb.cgi) indicated that most of
these eight peroxidases are highly expressed in roots
(Fig. S8), suggesting probable significant roles in
roots. Furthermore, the peroxidase activities were
compared amongst osacbp6, the wild type, and the
complemented line. In comparison with the wild type,
the peroxidase activities in osacbp6 decreased 25% in
7-day-old roots, 17% in 7-day-old shoots, and 17% in

21-day-old leaves (Fig. 5b). As expected, the level of
peroxidase activities in the complemented line
remained similar to the wild type with the exception
of an increase in 7-day-old shoots (Fig. 5b). Given
that peroxidases are bifunctional enzymes that can
oxidize substrates at the expense of H,O, but also
produce ROS (Passardi et al. 2004), an abundant de-
cline in the expression of peroxidases and reduced
peroxidase activities suggest that ROS homeostasis in
osacbp6 is perturbed. Taken together, a loss in
OsACBP6 had resulted in transcriptional changes in
the expression of genes related to redox, H,O, scav-
enging, and defense responses.
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Fig. 5 Disruption of reactive oxygen species homeostasis in the rice osacbp6 mutant. a Relative expression of genes encoding class Ill
peroxidases. Values are mean + SD (n = 3). b Comparison of peroxidase activities of the roots and shoots of 7-day-old seedlings and leaves of 21-
day-old wild type (WT), osacbp6 and complemented line osacbp6-C4 (C4). Values are means + SD (n = 3). ¢ Accumulation of superoxide anion
(0,7) and hydrogen peroxide (H,0,) in the leaf blades of osacbpé. Leaf blades of 21-day-old WT and osacbpé were subjected to nitroblue
tetrazolium (NBT) staining to detect O," or 3,3-diaminobenzidine tetrahydrochloride (DAB) staining to detect H,0, in the dark for 3 and 24 h,
respectively. Bars, 1 cm. d H,O, content in the roots and shoots of 7-day-old seedlings and leaves of 21-day-old WT, osacbp6 and C4. Values are
means + SD (n = 3). Asterisks indicate significant differences as evaluated by Student’s t-tests: *P < 0.05, **P < 0.01, **P < 0.001. WT, Oryza sativa
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ROS Homeostasis Is Perturbed in osacbp6

To examine whether the ROS levels were altered in
osacbp6, superoxide anion (O,7) and H,O, contents
were examined. The blue and brown coloration in 21-
day-old osacbp6 leaf blades indicated the accumulation
of O, and H,0,, respectively (Fig. 5c). Furthermore,
H,0, was quantified in osacbp6, the wild type, and the
complemented line (Fig. 5d). The H,O, levels in the root
and shoot of 7-day-old osachbp6 seedling and the leaves
of 21-day-old osacbp6 were significantly higher than the
wild type and complemented line. Meanwhile, there was
no significant difference between the wild type and com-
plemented line suggesting the restoration of OsACBP6
function in the latter.

As OsACBP6 was localized at the peroxisomes (Meng
et al. 2014), and H,O, overaccumulated in osacbp6, peroxi-
somal ROS scavenging was next explored. Given that plant
peroxisomes employ two major enzymatic antioxidant

systems, catalase (CAT) and ascorbate peroxidase (APX)/
monodehydroascorbate reductase (MDAR) system, to de-
toxify the H,O, generated by -oxidation (Eastmond 2007),
the expression of APX, MDAR, and CAT was examined in
osacbp6, the wild type and complemented line by qRT-PCR
(Fig. 6). In comparison to the wild type, there was no sig-
nificant difference in the expression of the eight APX genes
in osacbp6, including peroxisomal localized OsAPX3 and
OsAPX4 (Kaur and Hu 2011). The expression of five
MDAR genes was examined. Except LOC_0s08g05570, the
rest four MDAR genes are all peroxisomal localized (Kaur
and Hu 2011). Two of the five MDAR genes was enhanced
in osacbp6. In particular, LOC_Os08¢44.340 was induced in
osacbp6 but repressed in the complemented line. Also, the
expression of one of the three CAT genes was slightly ele-
vated. Hence, despite H,O, accumulation in osacbp6, the
peroxisomal ROS scavenging system did not seem to be ac-
tivated. Moreover, measurements of APX, MDAR and
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Fig. 6 The expression levels and activities of rice genes associated with reactive oxygen species scavenging. a Relative expression in the

leaves of 21-day-old wild type rice (WT), osacbp6 and complemented lines osacbp6-C4 (C4) were determined by quantitative real time RT-
PCR (gRT-PCR). Values are means + SD (n=3). b Comparison of activities of APX, MDAR and CAT. Enzyme activity was detected from 21-
day-old leaves of WT, osacbp6 and C4. Values are means + SD (n=3). Asterisks indicate significant differences as evaluated by Student’s t-
tests: *P < 0.05, **P < 0.01, **P < 0.001. APX, ascorbate peroxidase; MDAR, monodehydroascorbate reductase; CAT, catalase; WT, Oryza sativa
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CAT activities further support that there was no significant
difference in peroxisomal ROS scavenging system between
osacbp6 and the wild type (Fig. 6b). Above findings sug-
gested that the distribution of H,O, may not be confined
to the peroxisome.

Intrinsic JA Accumulated in osacbp6

Arising from an observation in differentially expressed
plant hormone-related genes, JA biosynthesis was inves-
tigated next to address if it was compromised in
osacbp6. Because JA is produced through S-oxidation in
the peroxisomes (Hu et al. 2012) and the overexpression
of OsACBP6 in the Arabidopsis pxal mutant had res-
cued JA production after wound treatment (Meng et al.
2014). The intrinsic JA level was significantly elevated in
21-day-old osacbp6 leaves (5.64 ng g™ ), five times higher
than the wild type (1.08 ngg ') (Fig. 7a). Other plant
hormones (SA, IAA and GA;) were also enhanced in
osacbp6 over the wild type (Fig. 7a). Therefore,

measurements of hormone levels indicated that JA and
SA production was not blocked in osacbpé6.
Subsequently, the expression of genes related to JA
biosynthesis and the JA signaling pathway in osacbp6
were examined. JA biosynthesis includes the release of
a-linolenic acid (a-LeA) from the lipid membrane by
phospholipases, oxygenation of a-LeA by lipoxygenase
or a-dioxygenases (DOXs) followed by steps catalyzed
by allene oxide synthase (AOS) and allene oxide cyclase
(AOC) to yield the JA precursor, cis-12-oxo-phytodie-
noic acid (OPDA). OPDA is then reduced by OPDA re-
ductase (OPR) and subjected to S-oxidation to generate
JA (Wasternack and Feussner 2018). When the expres-
sion of phospholipases D (OsPLDa4) and lipase EXTRA
GLUME 1 (EGI) that function in releasing a-LeA (Qi
et al. 2011; Cai et al. 2014), OsDOX, OsAOS2, OsAOC,
OsOPR3 (Koeduka et al. 2005; Mei et al. 2006; Guo et al.
2014) and transcription factor OsMYC2 that positively
regulates the JA-responsive genes (Uji et al. 2016), were
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Fig. 7 Alteration of plant hormone levels in the rice osacbp6 mutant. a Measurement of plant hormone content in 21-day-old leaves. b Relative
expression of genes related to JA biosynthesis and its signaling pathway. Values are means + SD (n = 3). Asterisks indicate significant differences

between the wild type (WT) and osacbp6 as evaluated by Student’s t-tests: *P < 0.05, **P < 0.01, ***P < 0.001. WT, Oryza sativa var. japonica cv.
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GLUME 1; DOX, a-dioxygenases; AOS, allene oxide synthase; AOC, allene oxide cyclase; OPR, OPDA reductase

examined, only OsDOX and OsAOS2 expression in-
creased in osacbp6, while others remained a similar level
to the wild type (Fig. 7b), consistent with transcriptomic
data. Given that OsDOX is activated by H,O, (Zhu et al.
2013), elevated JA level in osacbp6 would be a conse-
quence of repressed H,O, scavenging in osacbpé.

Discussion

The level and availability of acyl-CoA is strictly con-
trolled by proteins with binding abilities to meet the cel-
lular requirement (Neess et al. 2015). Acyl-CoAs are
sequestered and directed toward specific metabolic path-
ways (Neess et al. 2015). It has been proposed that
OsACBP6 is implicated in the formation and regulation
of the peroxisomal acyl-CoA pool and donation of acyl-
CoA for f-oxidation (Meng et al. 2014). This study
revealed that the disruption of peroxisomal matrix-
localized OsACBP6 in rice resulted in growth retardation

in both roots and leaves as well as smaller grain size, re-
sembling the phenotype of Arabidopsis and barley S-oxi-
dation dysfunction mutants deficient in the peroxisomal
ABC transporter (Zolman et al. 2001; Mendiondo et al.
2014), although the IBA sensitivity remained in osacbp6.
The above findings suggest that osacbp6 was not se-
verely affected in S-oxidation function. However, in-
creased acyl-CoA levels (specifically C18:3-CoA) and
some TAG molecular species content observed in
osacbp6 over the wild type suggest it bears similarity to
the Arabidopsis mutants defective in acyl-CoA import
(peroxisomal ABC transporter pxal/cts/ped3) and acti-
vation (peroxisomal long-chain acyl-CoA synthetase lac-
s6lacs7) and core enzymes of fatty acid S-oxidation
(mfp2, kat2) (Germain et al. 2001; Fulda et al. 2004;
Rylott et al. 2006; Graham 2008). The functions of plant
peroxisomal ABC transporters are highly conserved be-
tween eudicot Arabidopsis and monocot barley (Zolman
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et al. 2001; Mendiondo et al. 2014). Although the role of
the rice peroxisomal ABC transporter is yet unclear, two
orthologues of Arabidopsis PXA1 co-exists (Kaur and
Hu 2011). Localization of OsACBP6 in the peroxisomal
matrix suggests that OsACBP6 would not be able to
transfer acyl-CoAs directly from the cytosol into the per-
oxisome, although OsACBP6 does have a putative N-ter-
minal transmembrane domain. Taken together with
findings that recombinant OsACBP6 binds C18:2-CoA
and Cl18:3-CoA with high binding affinities in vitro
(Meng et al. 2011), the increased acyl-CoA levels in
osacbp6 and their corresponding decline in the comple-
mented line, support a role for OsACBP6 in the peroxi-
some most likely associated in the maintenance of a
peroxisomal acyl-CoA pool, especially for C18:3-CoA,
and to facilitate efficient utilization of acyl-CoAs
imported by PXA1 orthologues for subsequent 5-oxida-
tion. Loss of OsACBP6 might disrupt the utilization of
C18:3-CoA in the following S-oxidation and induce a
feedback inhibition to the import of C18:3-CoA into the
peroxisomes which might lead to the accumulation of
C18:3-CoA in the cytosol. On the other hand, DEG-
related to fatty acids synthesis, phospholipids biosyn-
thesis, and TAG biosynthesis were limited in osacbpé6,
suggesting loss of OsACBP6 may not increase TAG con-
tent. However, it has been proposed that acyl-CoA
utilization has a feedback influence on the rate of TAG
lipolysis, and the mechanism of acyl-CoA-mediated in-
hibition of TAG breakdown is not clear (Graham 2008;
Quettier and Eastmond 2009). Therefore, in osacbp6, the
relationship between acyl-CoA accumulation and an in-
crease in some TAG molecular species content awaits to
be further elucidated.

Arabidopsis mutants defective in p-oxidation-related
genes commonly display failure in early seedling estab-
lishment due to a block in TAG turnover (Graham
2008). The phenotypic difference between the wild type
and these mutants is indistinguishable at the vegetative
phase but some of them show abnormal inflorescence
later (Richmond and Bleecker 1999; Fulda et al. 2004;
Rylott et al. 2006; Wiszniewski et al. 2014). In contrast,
as starch in the endosperm is the major energy supply
for monocots post-germinative growth, the seedling es-
tablishment does not seem to be affected by a deficiency
in fatty acid S-oxidation (Mendiondo et al. 2014; Xu
et al. 2017). However, distinguishable phenotypes
emerge at the vegetative phase. A rice aiml mutant ap-
peared as a short root mutant with reduced meristem
activity due to blocked SA biosynthesis and reduced
ROS level (Xu et al. 2017). By repressing the expression
of redox and ROS-scavenging genes and maintaining a
proper level of ROS, SA maintains root meristem activity
(Xu et al. 2017). In this study, the root meristem activity
of osacbp6 also declined, but unlike aim1, its H,O, level
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in root was elevated. It has been demonstrated that Ara-
bidopsis bHLH TF UPBEAT1 (UPB1) regulates the bal-
ance of root tip cell proliferation and differentiation by
controlling the expression of a set of peroxidases and
therefore the balance of O,” and H,0, (Tsukagoshi
et al. 2010). Ectopic expression of UPBI represses the
peroxidases and results in H,O, accumulation and de-
creased meristem size in the root tip (Tsukagoshi et al.
2010). In osacbp6 root, reduction in root meristem activ-
ity, repression in gene expression of a set of peroxidases,
decrease in peroxidase activities, and accumulation of
H,0, occurred, which were restored in the complemen-
ted lines. These findings are partially consistent with
ROS-controlled root growth regulated by UPB1 (Tsuka-
goshi et al. 2010). Unfortunately, as a UPB1 orthologue
has not been identified in the rice genome using a
BLAST search in NCBI (National Center for Biotechnol-
ogy Information, http://blast.ncbi.nlm.nih.gov/Blast.cgi),
the TF responsible for such regulation remains elusive.
The regulatory mechanisms for the growth of leaf and
root are known to be different (Lu et al. 2014). In Arabi-
dopsis, leaf growth and final size are controlled by MYB-
like TF KUODA1 (KUA1)-regulated peroxidase activities
which in turn maintain ROS homeostasis (Lu et al.
2014). Although leaf and root growth are controlled by
different TFs, the direct targets of these TFs are peroxi-
dases and by regulation in the expression of peroxidases,
ROS homeostasis is maintained (Tsukagoshi et al. 2010;
Lu et al. 2014). In osacbp6, compromised leaf develop-
ment was represented by slow elongation and accom-
panied by a high H,O, level. Consistent with root, leaf
peroxidases of osacbp6 were also differentially expressed
and activities were reduced. In addition, given that O,~
can be converted to H,O, spontaneously or by enzym-
atic activities (Apel and Hirt 2004), the elevated level of
O, in osacbp6 also might be an alternative source of
H,0, accumulation. Due to the complexity of peroxi-
dases in promoting or restricting plant growth (Passardi
et al. 2004), the regulation mechanism of the reduced
peroxidase activities and accumulation of ROS in re-
tarded leaf development of osacbp6 were elusive. They
might contribute to abnormal cell proliferation or differ-
entiation and ultimately reduce leaf development. Taken
together, from the findings on root and leaf, retarded
growth in osacbp6 mostly possible resulted from a dis-
ruption of ROS homeostasis. On the other hand, as a
higher level of H,O, occurred throughout osacbp6 de-
velopment, it appears that stress response is constitu-
tively activated in osachbp6. Diminished growth of
osacbp6 is consistent with studies on growth-defense
tradeoffs, in which plant growth is inhibited by the acti-
vation of defense responses (Guo et al. 2018). Mean-
while, the examination of various plant hormones
further supports this hypothesis. Alteration in the plant
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hormone levels was noted in osacbp6, especially an in-
crease in JA content. The core jasmonate signaling path-
way functions in the perception of various
developmental and stress-related cues and mediation of
transcriptional responses (Howe et al. 2018). One of the
output responses of the jasmonate signaling pathway is
developmental responses, including growth inhibition,
defensive structures, and effects on reproduction and
fertility (Howe et al. 2018). As the first step of JA biosyn-
thesis, plants employ different lipases to liberate a-LeA
from chloroplast membrane lipids, including DONGLE
(DGL), DEFECTIVE IN ANTHER DEHISCENCEI1
(DAD1), and phospholipase A (PLA) PLA-Iyl in Arabi-
dopsis, PLDoa4 and o5 and EG1 in rice (Ellinger et al
2010; Qi et al. 2011; Cai et al. 2014). In contrast to an
induction triggered in JA biosynthesis (Qi et al. 2011),
PLDo4 and o5 showed no change in osacbp6. Despite
that EG1 is mainly required for development in rice (Cai
et al. 2014), there was no change for EG1 in osacbp6.
Limited alteration in expression of these lipases is con-
sistent with lack in an obvious loss of chloroplast mem-
brane lipids in comparison to the wild type, suggesting
a-LeA in osacbpé is sufficient to produce enough JA to
confer the balance between growth and defense.
Amongst enzymes involved in JA biosynthesis, only
DOX and AOS were induced in osacbp6. Given that
DOX is activated by H,O, (Zhu et al. 2013), enhanced
of JA biosynthesis in osacbp6 under normal growth con-
ditions appears to be a perception of the elevated H,O,
level and in turn adjusted the corresponding transcrip-
tional responses to diminish growth. Elevated JA level in
osacbp6 indicated that JA production from the 5-oxida-
tion of JA precursor, OPDA, was not blocked due to the
loss of OsACBP6. As we discussed above, OsACBP6
would not be responsible for direct import of substrate
into the peroxisomes. Therefore, in combination with
the changes in the expression of genes related to JA bio-
synthesis, elevated JA level is most likely resulted from
the secondary effects of the loss of OsACBP6.

Acyl-CoA esters are not only important intermediates
in lipid metabolism but also play a role in regulating
multiple cellular processes (Schmidt et al. 2018; Lung
and Chye 2019). Recently, direct evidence showed that
acyl-CoA esters function in the cellular signaling path-
way in Arabidopsis (Schmidt et al. 2018). An increased
C18:1-CoA level promoted the dissociation of TF RELA
TED TO APETALA 2.12 (RAP2.12) with its partner
AtACBP1, which determined subsequent hypoxia-
specific gene expression (Schmidt et al. 2018). Mean-
while, C16:0-CoA, C18:0-CoA, and C18:1-CoA triggered
distinct transcriptional responses (Schmidt et al. 2018).
Our findings that elevated acyl-CoA content in osacbp6
was accompanied by alterations in lipid composition as
well as ROS and plant hormone levels further support
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the critical roles of acyl-CoA esters in the signaling net-
work in both dicots and monocots. Although OsACBP6
has two cytosolic orthologues (AtACBP4 and AtACBP5)
in Arabidopsis, a mere single mutation in any made
them indistinguishable from the wild type (Hsiao et al
2015). Even in the acbp4acbp5 double mutant, the
phenotypic discrepancy was limited because another
cytosolic AtACBP6 co-exists (Hsiao et al. 2015). Based
on our results, a mutation in OsACBP6 led to pheno-
typic and physiological changes in rice. Furthermore, the
correlation of increased acyl-CoA pool size with the loss
of OsACBP6 also suggests a possible role of overexpres-
sion of OsACBP6 in the wild type in facilitating acyl-
CoAs utilization.

Conclusions

In conclusion, acyl-CoA profiling in this study revealed
the role of ACBPs in acyl-CoA utilization is conserved
in both Arabidopsis and rice. However, it is worth men-
tioning that growth retardation in osacbp6 was associ-
ated with a series of changes including changes in acyl-
CoA pool size, lipid metabolism, ROS content, and plant
hormone levels as well as other transcriptional response,
indicating the correlation of enhanced acyl-CoAs con-
tent with defense responses.

Methods

Plant Materials and Growth Conditions

T-DNA line PFG_1B-14,906 (designated as osacbp6) was
obtained from Postech PFG T-DNA, South Korea (Ryu
et al. 2004). To prepare the samples for transcriptomic
analysis, seeds of wild-type rice (Oryza sativa var. japon-
ica cv. Dongjin) and osacbp6 were soaked in water and
germinated in dark at 25°C for 2 days. To collect the
roots and shoots, germinated seeds grown in water were
placed in the growth chamber under a 10-h-light (30 °C)
/ 14-h-dark (28°C) cycle. Roots and shoots were sam-
pled separately at 5 and 7 days after imbibition. To col-
lect the leaf blade, germinated seeds were grown in soil
under the same growth condition as described above.
The leaf blades were collected at 21 days after imbibi-
tion. For IBA treatment, germinated seeds were hydro-
ponically cultured in Hoagland solution supplemented
with 10 mg L™ " IBA for 7 days. Cell proliferation in the
root meristem was visualized by the incorporation of
EdU into DNA at S-phase (Kotogany et al. 2010). EAU
staining was performed using an EdU kit (C10310,
Apollo 488, Ribobio) according to Li et al. (2015).
Briefly, roots of 5-day-old rice seedlings (10 seedlings for
each genotype) were immersed in a 50 uM EdU solution
for 2h. After fixation in 4% paraformaldehyde for 30
min, roots were incubated with freshly-prepared Apollo
solution for 30 min, followed by 4',6-Diamidino-2-Phe-
nylindole (DAPI, 1mgmL™"') staining for 10 min and
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fluorescence microscopy. Images were analyzed using
Image] software (Schneider et al. 2012). In order to ob-
serve leaf elongation, the length of the third leaf was
measured daily with a ruler using the top edge of the
pot as a reference (Pettko-Szandtner et al. 2015). Mea-
surements were carried out on five plants starting from
the emergence of the third leaf for 6 days.

T-DNA Confirmation

The gene-specific primer (ML2067) and T-DNA left
border primer (2717-LB) were used in PCR to confirm
the T-DNA insertion in PFG_1B-14,906 (osacbp6). The
combinations of gene-specific primer pair ML2066/
ML2067 and 2717-LB/ML2067 were used to screen for
the homozygote mutant. Gene-specific primer pair
ML1050 and ML1051 was used in semiquantitative RT-
PCR to detect OsACBP6 expression. The primer se-
quences were ML2066: 5 -ATCAGGGCTGAGGTGC
TA-3'; ML2067: 5-AGGGCTTCAGAATCGTATGG-
3'; 2717-LB: 5'-ACGCTGAACTTGTGGCCGTT-3';
ML1050: 5'-CCAGATCTTCCCGCTTCCAGAACGAC-
3’; and ML1051: 5'-CTGAATTCTTAAGTCATGCCCT
CACTG-3".

Generation of osacbp6-Complemented Transgenic Rice
An OsACBP6 putative promoter region containing 2.0-
kb upstream of the transcription start site was amplified
using PCR with primer pair Promoter-F (5'-
CAGTCGTCTCACAACTGCCACTGTAAATTTGT
CTA-3" with the BsmBI underlined) and Promoter-R
(5'-CAGTCGTCTCAGCTTCGCGGGCGATGAATGA-
3" with BsmBI underlined). The 1.97-kb open reading
frame (ORF) of OsACBP6 was amplified by RT-PCR
using primer pair ORF-F (5'-CAGTCGTCTCAAAGCA
TGGCGAGCTCCGGACTCGC-3" with BsmBI under-
lined) and ORF-R (5'-CAGTCGTCTCATACATCAAG
ACTCGGACTTATCAG-3" with BsmBI underlined). To
construct the OsACBP6 promoter driving OsACBP6
¢DNA plasmid (pOsACBP6::0sACBP6) for complemen-
tation, the PCR products of promoter and ORF were
digested by BsmBI, and the binary vector pBWA(V)H-
ccdb-Tnos was digested by Eco31l. The promoter and
the ORF regions were ligated to the vector pPBWA(V)H-
ccdb-Tnos using T4 ligase. The pOsACBP6::0sACBP6
construct was then introduced into osacbp6 by Agrobac-
terium-mediated transformation. Positive transgenic rice
lines were confirmed by PCR and hygromycin screening,
and the T3 generation was used to observe changes in
the phenotype.

Acyl-CoA and Lipid Profiling

For acyl-CoA measurement, acyl-CoA esters were ex-
tracted from freshly harvested leaves from at least five
individual 21-day-old (100 mg, three replicates) soil-
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grown plants according to Woldegiorgis et al. (1985)
and Larson and Graham (2001). For lipid profiling,
leaves from at least five individual 21-day-old soil-grown
plants were freshly collected for analysis (60 mg, three
replicates). Plant materials were inactivated with hot iso-
propanol, and total lipid extraction was performed as
previously described (Welti et al. 2002).

Lipid and acyl-CoA measurements were performed on
Exion UPLC coupled with QTRAP 6500 PLUS (SCIEX)
under the conditions: curtain gas = 20 psi, ion spray volt-
age = 5500V, temperature =400 °C, ion source gas 1=
35 psi, and ion source gas 2 = 35 psi. Polar lipid and gly-
cerol lipids (diacylglycerols (DAGs) and TAGs) were an-
alyzed as previously described (Lam et al. 2014; Gao
et al. 2017). Separation of galactolipids MGDG and
DGDG were achieved according to Cheong et al. (2014)
and Gao et al. (2017).

Transcriptomic Analysis and DEG Identification

Total RNA from 5-day-old roots, 5-day-old shoots, 7-
day-old roots, 7-day-old shoots and 21-day-old leaves,
respectively, was extracted using the RNeasy Plant Mini
Kit (Qiagen). Transcriptome analysis was conducted at
Annoroad Gene Technology Corporation (Beijing,
China). The data from three replicates were collected
and analyzed. Genes whose expression is increased by
over 100% or decreased by over 50% with adjusted P-
value <0.05 were considered as DEGs.

Gene Ontology Enrichment and MapMan Analysis

GO enrichment was performed using AgriGO v2.0 (Tian
et al. 2017) (http://systemsbiology.cau.edu.cn/agriGOv2/
). Under the species “Oryza sativa japonica”, singular
enrichment analysis was performed. GO terms in bio-
logical process with FDR value < 0.005 were considered
as significant and analyzed further. The biological pro-
cesses and metabolic pathways were systematically eval-
uated using MapMan analysis (Thimm et al. 2004),
MapMan software version 3.6.0RC1 (https://mapman.
gabipd.org/) was employed. The rice gene identifier
(osa_MSU_v7_2017-09-05_mapping.txt) that was
imported to MapMan was downloaded from GoMap-
Man (Ramsak et al. 2014) (http://www.gomapman.org/
export/current/mapman). The “Metabolism overview”
and the “Cellular response” sections of MapMan were
used to display the changes in DEGs with putative
functions.

Quantitative Real-Time RT-PCR

Total RNA from 7-day-old roots, 7-day-old shoots and
21-day-old leaves, respectively, was extracted using the
RNeasy Plant Mini Kit (Qiagen) and reverse transcribed
by ReverTra Ace® qPCR RT Master Mix with gDNA Re-
mover (Toyobo). qRT-PCR was performed on Light-
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Cycler Roche 480 (Roche) with LightCycler® 480 SYBR
Green I Master (Roche) under the following conditions:
95°C for 10 min, then 40 cycles of 95°C for 10s and
60 °C for 20s. Primer sequences were listed in Dataset
$10. ACTINI and UBIQUITINI were used as reference
genes. The relative expression level was calculated using
the 2724t method (Schmittgen and Livak 2008).

Detection of ROS and Quantitative Measurement of
Hydrogen Peroxide (H,0,)

Nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine
tetrahydrochloride (DAB) staining were conducted as
described by Fukao et al. (2011). Each leaf blade from a
21-day-old rice plant grown in soil was immersed in a
solution containing 0.5 mgmL~" NBT (dissolved in 10
mM potassium phosphate buffer, pH7.6) and 1mg
mL~ ' DAB (dissolved in 50 mM Tris-Acetate buffer, pH
5.0). After incubation under vacuum for 5 min, samples
were kept in the dark at 25°C for 3 h for NBT staining
and 24 h for DAB staining. Subsequently, plant materials
were boiled in 95% (v/v) ethanol for 20 min to remove
chlorophyll and rehydrated in 40% (v/v) glycerol. Each
experiment was repeated on at least five plants and rep-
resentative images are displayed.

H,O, content was measured using the Amplex Red
Hydrogen Peroxide/Peroxidase Assay Kit (Invitrogen).
Briefly, roots and shoots of 7-day-old seedlings and 21-
day-old leaf blades from at least three individual plants
were freshly collected (50 mg, three replicates) and
ground to a fine powder in liquid nitrogen followed by
the immediate addition of 1 mL ice-cold 20 mM sodium
phosphate buffer (pH6.5). The supernatant was col-
lected by centrifugation (10,000 g, 4 °C, 10 min) followed
by analysis according to the manufacturer’s instructions.

Measurement of Antioxidative Enzyme Activity

Peroxidase activity was measured according to Chen
et al. (2013). Briefly, roots and shoots of 7-day-old seed-
lings and 21-day-old leaf blades from at least six individ-
ual plants were freshly collected and ground in 50 mM
sodium phosphate buffer (pH 7.8) supplemented with
1% polyvinylpyrrolidone and -mercaptoethanol (1:5, m/
v) on ice. The supernatant was collected after centrifuga-
tion (13,000¢, 4°C, 15 min) and used for peroxidase ac-
tivity assay. The reaction mixture (2 mL) composed of
50 mM sodium acetate buffer (pH 5.6), 5.4 mM guaiacol,
15mM H,0,, and 100 uL of enzyme extract. The ab-
sorbance at 470 nm increase in 1 min was recorded using
Cary 60 UV-Vis (Agilent). Peroxidase activity was deter-
mined by the increase in the absorbance at 470 nm per
minute per mg protein. The enzyme extract from 21-
day-old leaf blades was also used for determination of
CAT, APX and MDAR activity. CAT and APX activity
were measured according to Wu and Yang (2016). The
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reaction mixture for CAT activity determination com-
posed of composed of 50 mM sodium phosphate buffer
(pH7.8) 1.5mL, ddH,O 1mlL, enzyme extract 200 uL
and 300 uL. 0.1 M H,O,. The reaction mixture for APX
activity determination composed of 50 mM sodium
phosphate buffer (pH7.8) 1.25mL, 5mM ascorbic acid
(AsA) 200 pL, enzyme extract 50 pL and 500 uL 0.1 mM
H,0,. While MDAR activity was measured according to
Hossain and Asada (1985). The reaction mixture com-
posed of 50mM sodium phosphate buffer (pH 7.8)
450 uL, 0.1 mM AsA 500 pL, 0.1 mM NADH 800 puL, en-
zyme extract 100 uL and 0.14 unit of ascorbate oxidase.
CAT, APX and MDAR activity were determined by the
decrease in the absorbance at 240 nm, 290 nm and 340
nm, respectively, per minute per mg protein.

Quantification of Plant Hormones

Plant hormone extraction and quantification were con-
ducted according to Pan et al. (2010) with minor modifi-
cations. Briefly, leaf tissue was ground into fine powder
in liquid nitrogen. Plant hormones were extracted from
1g powder with 10 mL isopropanol/H,O/concentrated
HCl (2:1:0.002, v/v/v) extraction buffer supplemented
with 8 uL internal standards solution containing 1 pg
mL ™' of each internal standard compound (ds-IAA, d-
ABA, de-SA, HyJA, and d,-GA,). After shaking for 30
min at 4°C, 20 mL dichloromethane was added to the
extraction buffer followed by further shaking for 30 min
at 4°C. Samples were then centrifuged at 13000 g for 5
min and the lower phase was transferred, concentrated
to dryness with nitrogen flow in the dark and resolved
with 400 uL methanol (0.1% formic acid). Hormones
were quantified using HPLC-MS/MS (SCIEX 6500
QTRAP) equipped with Poroshell 120 SB-C18 column
(Agilent).

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512284-020-00435-y.

Additional file 1: Fig. S1 Growth of the rice osacbp6 mutant and the
wild type (WT) in soil. a Images representing 5- and 7-day-old seedlings
grown in soil. Bars, 1 cm. b Shoot and primary root length comparison
between WT and osacbpé (left) and primary root reduction of osacbp6
(right) Values are means + SD (n = 13). Asterisks indicate significant differ-
ences between WT and osacbpé6 as evaluated by Student's t-tests: ***P <
0.001. WT, Oryza sativa var. japonica cv. Dongjin.

Additional file 2: Fig. S2 Grain size and indole-3-butyric acid (IBA) sen-
sitivity of osacbp6. a The grain length of osacbp6 is shorter than WT.
Values are means + SD (n = 30). Asterisks indicate significant differences
between WT and osacbp6 as evaluated by Student's t-tests: ***P < 0.001.
b osacbpé is sensitive to the growth inhibition effect of IBA. Values are
means + SD (n = 5). Asterisks indicate significant differences between
mock and IBA treatment as evaluated by Student’s t-tests: ***P < 0.001.
WT, Oryza sativa var. japonica cv. Dongjin.

Additional file 3: Fig. S3 Recovery in leaf and grain length of the rice
osacbp6 mutant by complementation of OsACBP6. a Relative expression



https://doi.org/10.1186/s12284-020-00435-y
https://doi.org/10.1186/s12284-020-00435-y

Meng et al. Rice (2020) 13:75

of OsACBP6 in the 7-day-old seedlings from the wild type (WT), osacbpé,
complemented lines osacbp6-C1 (CT), osacbp6-C2 (C2) and osacbp6-C4
(C4) measured by quantitative real time RT-PCR (qRT-PCR) using OsACBP6
specific primer pair ML1113 and ML1114. Values are means + SD (n = 3).
b and ¢ Leaf length of 21-day-old soil-grown seedlings (b) and grain size
(c) are compared amongst osacbp6, WT, and the complemented lines C7,
(2 and (4. Values are mean + SD (leaf length: n=5; grain size: n=30). L,
value of osacbp6 lower than WT and the complemented lines. H, value of
the complemented line higher than WT. Asterisks indicate significant dif-
ferences as evaluated by Student’s t-tests: *P < 0.05, **P < 0.01, ***P <
0.001. WT, Oryza sativa var. japonica cv. Dongjin.

Additional file 4: Fig. S4 Expression of OsACBP6 from the Rice eFP
Browser. Absolute expression levels in the seedling root, young leaf and
mature leaf were retrieved from the Rice eFP Browser (http://bar.
utoronto.ca/efprice/cgi-bin/efpWeb.cgi).

Additional file 5: Fig. S5 Membrane lipid content (mol % of total) in
21-day-old leaves. Values are means + SD (n = 3). WT, wild type; C4, com-
plemented line osacbp6-C4; PC, Phosphatidylcholine; PE, Phosphatidyleth-
anolamine; Pl, Phosphatidylinositol; PS, Phosphatidylserine; PA,
Phosphatidic acid; MGDG, Monogalactosyldiacylglycerol; DGDG, Digalac-
tosyldiacylglycerol; PG, Phosphatidylglycerol.

Additional file 6: Fig. S6 Differential expression of genes involved in
lipid metabolism in osacbpé. a-¢ Expression of genes associated with
fatty acid synthesis and elongation (a) phospholipid synthesis (b), and
lipid degradation (c), respectively. Values are mean of Log, fold change
(n=3). The color in each cell represents the expression level based on
the Log; fold change. Cells without color indicate the genes were not
differentially expressed. R5, 5-day-old roots; R7, 7-day-old roots; S5, 5-day-
old shoots; S7, 7-day-old shoots; L21, 21-day-old leaves. KCS, beta-
ketoacyl-CoA synthase; ACSL, long-chain acyl-CoA synthetase; FAD,
omega-3 fatty acid desaturase; GPAT, glycerol 3-phosphate acyltransfer-
ase; CFA, cyclopropane-fatty-acyl-phospholipid synthase; GDSL, GDSL-like
lipase; SDR, short-chain dehydrogenases/reductase.

Additional file 7: Fig. S7 Analysis of differentially expressed genes
related to cellular response and regulation in osacbp6. a Numbers of
differentially expressed genes at different stages and organs. b and ¢
Heat map of phytohormones (b) and selected transcription factors (c) in
osacbp6 based on the MapMan results, respectively. Each square
represents a differentially expressed gene. The color indicates the level of
up-regulation (red) and down-regulation (blue) based on the value of
mean Log, fold change (n = 3). The full list of differentially expressed
genes is displayed in Dataset S8 and S9. BR, brassinosteroid; GA, gibberel-
lin; ABA, abscisic acid; JA, jasmonic acid; SA, salicylic acid; AP2/EREBP,
APETALA2/ethylene-responsive element binding protein family; bZIP,
basic leucine zipper transcription factor family; MYB, myeloblastosis tran-
scription factor family; WRKY, WRKY transcription factor family; ABI3/VP1,
ABA-INSENSITIVE3/VIVIPAROUSI transcription factor family; bHLH, basic
helix-loop-helix transcription factor family; Aux/IAA, auxin/indole-3-acetic
acid transcription factor family; NAC, NO APICAL MERISTEM (NAM), ARABI-
DOPSIS TRANSCRIPTION ACTIVATION FACTOR1-2 (ATAF1/2), and CUP-
SHAPED COTYLEDON?2 (CUC2) transcription factor family.

Additional file 8: Fig. S8 Expression of peroxidases from the Rice eFP
Browser. Absolute expression levels in the seedling root, young leaf, and
mature leaf were retrieved from the Rice eFP Browser (http://bar.
utoronto.ca/efprice/cgi-bin/efpWeb.cgi).

Additional file 9. Dataset S1-S10.
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