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Abstract

Background: African rice, Oryza glaberrima, is an invaluable resource for rice cultivation and for the improvement
of biotic and abiotic resistance properties. Since its domestication in the inner Niger delta ca. 2500 years BP, African
rice has colonized a variety of ecologically and climatically diverse regions. However, little is known about the
genetic basis of quantitative traits and adaptive variation of agricultural interest for this species.

Results: Using a reference set of 163 fully re-sequenced accessions, we report the results of a Genome Wide
Association Study carried out for African rice. We investigated a diverse panel of traits, including flowering date,
panicle architecture and resistance to Rice yellow mottle virus. For this, we devised a pipeline using complementary
statistical association methods. First, using flowering time as a target trait, we found several association peaks, one
of which co-localised with a well described gene in the Asian rice flowering pathway, OsGi, and identified new
genomic regions that would deserve more study. Then we applied our pipeline to panicle- and resistance-related
traits, highlighting some interesting genomic regions and candidate genes. Lastly, using a high-resolution climate

might be involved in adaptation to climatic variations.

variation

database, we performed an association analysis based on climatic variables, searching for genomic regions that

Conclusion: Our results collectively provide insights into the extent to which adaptive variation is governed by
sequence diversity within the O. glaberrima genome, paving the way for in-depth studies of the genetic basis of
traits of interest that might be useful to the rice breeding community.
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Background

African rice, Oryza glaberrima Steud., was domesticated in-
dependently of Asian rice Oryza sativa L. (Wang et al. 2014;
Meyer et al. 2016; Cubry et al. 2018; Choi et al. 2019). Its do-
mestication took place in the inner delta of the Niger river
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(Cubry et al. 2018), from a wild relative species, Oryza barthii
A. Chev.. Its origin from this wild Sahelian species explains
its strong tolerance or resistance to biotic and abiotic stresses
(Sarla and Swamy 2005). In the context of increasing tem-
peratures and a more variable climate, strong tolerance to
such stresses is an important objective for rice agriculture
worldwide. However, knowledge of the genetic basis of
phenotypic variation in African rice remains very limited.
With the exception of salinity tolerance (Meyer et al. 2016),
few association studies have been performed for traits of
agricultural interest in this species. Genome wide association
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studies (GWAS) have successfully identified genes of func-
tional importance associated with flowering time in Asian
rice (Zhao et al. 2011; Huang et al. 2012; Yano et al. 2016).
For Asian rice, the genetic determination of this trait is well
understood (Lee and An 2015), whereas we have no infor-
mation about the variation of this trait for African rice. An-
other trait of broad interest for rice farmers and breeder
communities is the architecture of the panicle. This trait is
one of the main components of yield potential, because
the number of seeds per panicle is directly related to the
branching complexity of the inflorescence (Xing and
Zhang 2010). With increasing global movement of plant
material and climate change, biotic threats to rice agricul-
ture continue to evolve and the search for new sources of
resistance to pathogens is therefore a challenging research
field. Rice yellow mottle virus (RYMYV) is responsible for
one of the most damaging diseases of rice in Africa
(Kouassi et al. 2005; Issaka et al. 2012; Kam et al. 2013).
Resistance genes against RYMV are mostly found in O.

Table 1 List of traits and variables used for the association study
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glaberrima (Pidon et al. 2020), and this species may be an
interesting source of quantitative trait loci (QTLs) for glo-
bal rice breeding strategies (Thiémélé et al. 2010).

To better assess the functional variation present in Af-
rican rice, we developed a genome-wide association
panel and corresponding phenotypic datasets for flower-
ing time, inflorescence architecture, and resistance to
RYMV. Using several complementary statistical methods
for association genetics, we identified key genomic re-
gions for flowering time variation, panicle architecture,
quantitative resistance to RYMV and climatic variation.

Results

We took opportunity of previously built genomic re-

sources for a panel of 163 African rice genotypes (Cubry

et al. 2018) to address the genetic determinant of im-

portant agronomic traits using several GWAS methods.
The phenotypic data were obtained from infield exper-

iments (for panicle architecture and flowering time),

Category Trait Source Variables Transformation used?
Flowering Early sowing Field DFT2012a no
DFT2014a no
Late sowing Field DFT2012b yes
DFT2014b yes
Panicle Rachis length (RL) Field RL2012 yes
RL2014 yes
Spikelet number (SpN) Field SpN2012 yes
SpN2014 yes
Primary branch number (PBN) Field PBN2012 yes
PBN2014 yes
Secondary branch number (SBN) Field SBN2012 yes
SBN2014 yes
Primary branch average length (PBL) Field PBL2012 yes
PBL2014 yes
Secondary branch average length (SBL) Field SBL2012 yes
SBL2014 yes
Primary branch internode average length (PBintL) Field PBintL2012 no
PBintL2014 no
Secondary branch internode average length (SBintL) Field SBintL2012 yes
SBintL2014 yes
Resistance Resistance to Rice yellow mottle virus (RYMV) Greenhouse RYMV1 yes
RYMV2 yes
RYMV3 yes
Environment Climate-related variables principal component (bioPC) Database bioPC1 yes
bioPC2 yes
Monthly maximum temperature principal component (Tmax) Database tmaxPC1 yes

tmaxPC2 yes
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greenhouse experiments (RYMV resistance) or from
available public databases for environmental data (Table 1;
details in Additional file 1: Table S1). A Box-Cox transform-
ation was applied to all variables except early flowering
(DFT2012a, DFT2014a) and primary branch internode aver-
age length (PBIntL2012, PBIntl2014), as for these variables
both data from 2012 and 2014 fitted a normal distribution
(Additional file 2: Table S2; Additional file 3: Fig. S1). Herit-
ability ranged from 0.52 to 0.89 for the different experimen-
tal variables, showing the phenotype was strongly linked to
genetic variation (Additional file 4: Table S3).

A total of 892,539 SNPs previously identified (Cubry et al.
2018) from 163 different O. glaberrima accessions was used
in this study. The genome-wide linkage disequilibrium was
high at short distance and slowly decayed with increasing
genomic distance. It remained above 0.2 for at least 150 kb
(Additional file 5: Fig. S2). This is in accordance with previ-
ously published results (Cubry et al. 2018).

Genetic structure is rather subtle, with a cross-entropy
criterion that decreased slowly with increasing K (Add-
itional file 6: Fig. S3a). However, we assumed that the
number of ancestry groups that best explained our data
was four, with a subtle elbow in the cross-entropy curve
at this point. Ancestral population membership esti-
mated for the genotypes allowed to identify four groups
but with a lot of mixture (Additional file 6: Fig. S3b).
The retained number of four was subsequently used as
an input for some genetic association methods to correct
for population structure.

The geographic spanning of phenotypic variables and cor-
relation with genetic structure was determined. No clear geo-
graphic clustering or strong correlation between phenotypic
data and genetic structure was observed for any variable
(Additional file 7: Fig. S4; Additional file 8: Fig. S5).

Three GWAS methods, namely efficient mixed model ana-
lysis (EMMA, Kang et al. 2008), mixed-linear model (MLM,
Zhang et al. 2010) and latent factor mixed model (LFMM,
Frichot et al. 2013) were applied to identify associations be-
tween genomic polymorphisms and phenotypic variables.
Using a non-corrected analysis of variance (ANOVA) as a
benchmark, all methods allowed an efficient correction for
false positives linked to genetic structure (QQ-plots, see
Additional files 9: Fig. S6). A total of 1976 SNP/trait associa-
tions were detected at 10~ ° p-value threshold for all the traits
tested (Table 2). About 25% of them were detected with at
least two methods (Table 2; Additional file 12: Table S4).
The EMMA method detected a higher number of SNPs than
the two others for most of the traits and the MLM method
detected only 13% of the associations; however contrasted re-
sults were observed depending on the traits. A total of 82
candidate genomic regions associated to 10 different vari-
ables was identified, considering a 50kb genomic window
around each significant SNP and retaining only regions con-
sistent with at least two methods.
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Table 2 Numbers of significant SNPs, regions and genes found
to be associated with the different traits. Significant SNPs were
detected with the different models using the Fisher
combination method and based on a 10™° p-value threshold.
The "EMMA”, “"MLM" and “LFMM" columns indicate the number
of SNPs detected for each method. The “2_met” and “3_met"
columns indicate the number of SNPs detected by two or three
methods respectively. Fifty kb windows around these SNPs
defined independent genomic regions associated with each
variable and only regions containing SNPs detected with at
least two methods were retained

Trait Significant SNPs Regions
EMMA MLM LFMM 2 _met 3_met

BioPC1 17 0 0 0 0 0
BioPC2 5 0 8 0 0 0
TmaxPC1 10 0 0 0 0 0
TmaxPC2 211 3 89 89 3 16
Early Sowing 24 1 657 17 0 6
Late Sowing 191 2 141 105 0 5
RYMV 454 124 90 120 65 31
SpN 4 0 0 0 0 0
PBN 0 7 0 0 0 0
SBN 14 14 1 8 0 4
RL 37 18 2 3 1 3
PBL 37 30 23 30 23 1
SBL 66 2 79 63 2 10
PBintL 21 4 2 4 2 1
SBintL 53 119 0 49 0 5

Flowering Time

The genome-wide association study of flowering time
based on data from the early planting dates allowed us
to identify 664 non-redundant SNPs statistically associ-
ated with this trait for at least one method (10™° p-
value threshold, Table 2; Additional file 12: Table S4).
Most of these SNPs were at a distance of less than 25
kb from each other and were clumped into six genomic
regions detected by at least two methods (Table 2; Add-
itional file 12: Table S4; Additional file 13: Table S5).
Corresponding analyses performed using data from the
later planting date revealed a lower number of signifi-
cant associations: 229 non-redundant significant SNPs
resulting in five genomic regions detected with at least
two methods (Table 2; Additional file 12: Table S4;
Additional file 13: Table S5). Taken together, these two
variables helped to define nine regions associated with
variation in flowering time (Additional file 13: Table
S5). These regions encompassed 79 genes (Add-
itional file 14: Table S6). One GWAS peak for both
early and late sowing co-localized with a known Asian
rice flowering time gene (Table 2; Fig. 1): OsGI on
chromosome 1.
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Using an expert list based on bibliography, we checked
the enrichment in genes known to be involved in flower-
ing among the 79 candidate genes (Additional file 9:
Table S5). Considering that we detected one gene from
this list, this resulted in a twelve-fold enrichment, not
significant using a G-test. Considering a 10™* p-value
less stringent threshold and only one method for the de-
tection of association resulted in the identification of
1025 genes. Six of them belonged to our expert list, cor-
responding to a five-fold significant enrichment (Add-
itional file 15: Table S7).

Panicle Morphological Traits

A total of 344 non-redundant significant SNPs was de-
tected for at least one of the panicle morphological traits
at 10”° p-value threshold for any of the three methods
used (Table 2; Additional file 12: Table S4). Twenty-
three unique genomic regions associated with one or
more morphological traits were identified (Table 2; Add-
itional file 13: Table S5). One of them (rOg-PAN-14)
was associated with two traits: secondary branch number
(SBN) and secondary branch average length (SBL). The
22 remaining regions were each associated with a single
trait: 3 with SBN, 3 with Rachis length (RL), 1 with pri-
mary branch average length (PBL), 9 with SBL, 1 with
PBintL and 5 with secondary branch internode average
length (SBintL). No region associated with spikelet num-
ber (SpN) and primary branch number (PBN) traits was
selected, as significative SNPs for these traits were de-
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associated regions, 283 annotated genes were identified
(Additional file 14: Table S6). Among those genes, two
were already known to be associated to panicle develop-
ment in O. sativa (i.e. spikelet number and secondary
branch number): NARROW LEAF8 (NALS8) which co-
localized with the rOg-PAN-15 region (Chen et al. 2019)
and FACTOR OF DNA METHYLATION LIKEI
(OsFDML1) with the rOg-PAN-3 region (Tao et al
2018), both associated with SBL trait in our study (Add-
itional file 14: Table S6).

RYMV Resistance

Quantitative resistance to RYMYV was found to be associ-
ated with 483 SNPs detected with any of the three
methods and delimiting 31 regions detected with at least
two methods (Table 2; Additional file 12: Table S4; Add-
itional file 13: Table S5). Two thirds of these SNPs were
clustered in six regions defining a 1.8 Mb interval around
position 26,5Mb on chromosome 11, which underlined
the major role of this genomic interval in RYMV resist-
ance. A total of 287 candidate genes were identified in the
candidate regions (Table 2; Additional file 14: Table S6).
Interestingly, the high resistance gene RYMV3 is located
at position 26,4 Mb on chromosome 11 (Pidon et al.
2017), in the cluster of candidate regions identified on this
chromosome (Fig. 2).

Environment-Related Variables
In order to study association with environmental vari-

tected with a single method only (Table 2). Over the 23  ables, we downloaded climatic variables for 107
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Fig. 1 Manhattan plot of LFMM association results for flowering time assessed for early sowing. The red line indicates the 10~ p-value threshold.
SNPs exhibiting lower p-values than the threshold are indicated as green dots. Positions of known Asian rice flowering genes listed in the expert
list (see text) are indicated by vertical blue lines




Cubry et al. Rice (2020) 13:66

geolocalised accessions (Cubry et al. 2018) from the
worldclim v1.4 database (Hijmans et al. 2005). The first
two axes of a PCA on bioclimatic data (BioPC1 and
BioPC2) explained 49.91% and 26.32% of the variance
of all variables. BioPCl was mainly explained by
temperature seasonality (bio4) and precipitation of
driest quarter (biol7) while BioPC2 was mainly ex-
plained by mean temperature of driest quarter (bio9)
and mean temperature of coldest quarter (bioll). We
evaluated the statistical association of genetic poly-
morphisms with the first and second axes of the
PCA. Using our threshold, we detected 17 and 13 sig-
nificant associations for BioPC1 and BioPC2 respect-
ively (Table 2). However, no genomic region was
detected with at least two methods.

When considering maximum temperature variables
(Tmax), 73.56% and 17.90% of the variance was explained by
the first PCA axis (TmaxPCl) and second PCA axis
(TmaxPC2) respectively. Ten associations were found con-
sidering TmaxPC1, while TmaxPC2 allowed us to detect 211
SNPs. Considering genomic regions detected by at least two
methods, we found 16 regions for TmaxPC2 only (Table 2;
Additional file 13: Table S5). When intersected with genome
annotation, these regions encompassed 167 genes (Add-
itional File 14: Table S6).
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Discussion

The O. glaberrima collection used in this study com-
prised 163 accessions, of which not all were included for
some traits. This limited number of accessions likely do
not allow the detection of associations involving low fre-
quency variants. It could also have impaired the detec-
tion of any association for traits strongly correlated to
genetic structure. However, thanks to the weak structure
of this population, and more generally the O. glaberrima
species (Cubry et al. 2018; Additional file 6: Fig. S3), it
still allowed the detection of significant associations. We
retained a 10”° p-value cutoff which is more relaxed
than a Bonferroni threshold. However, we selected only
genomic regions consistent with two methods, which
limits false positives and give a broad scale idea about
polymorphisms associated with important phenotypic
variables. Considering this threshold, seventy-nine dis-
tinct genomic regions were found to be associated to
phenotypic traits related to flowering date, panicle archi-
tecture, virus resistance and environmental traits. A false
discovery rate (FDR) 5% threshold frequently used in
GWAS would have retrieved a far larger number of
SNPs and regions. Most of the regions identified in this
study would also have been identified with a FDR 5%
threshold, confirming the stringency of our approach.
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Fig. 2 Details of the Manhattan plot obtained with EMMA on the region associated to RYMV resistance on chromosome 11. The 10”° p-value
threshold is represented by a red horizontal line. Positions of the major resistance gene RYMV3 is indicated by plain vertical blue lines and
positions of other NLR genes on chromosome 11 are indicated by dotted blue lines
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Given the extent of the LD within our sample, we lack
power to address fine dissection of quantitative traits.
We chose a rather conservative approach by defining
large genomic windows around the SNPs we detected as
significantly associated with one of our traits of interest.
The lists of genes we identified likely contain a large
number of non-associated ones and therefore should be
considered with caution. More studies, including func-
tional ones, will be needed to precise which genes are
good candidates for the phenotypic traits variation.

Limited Overlap of Flowering Time and Panicle
Architecture Genetic Networks Between African and Asian
Crop Species
The flowering pathway is a well described pathway in
Asian rice O. sativa, with several known key genes (Tsuji
et al. 2011; Hori et al. 2016). Based on our expert list of
known flowering genes, we were able to identify a peak
that co-localized with a known Asian rice flowering
gene, OsGl. However, using a G-test, this enrichment
was not significant, certainly due to the fact that we had
only one gene in our test. Using a less stringent GWAS
threshold enabled to achieve a significant enrichment,
suggesting our method could significantly retrieve genes
involved in the variability of this trait. OsGI is an ortho-
log of the Arabidopsis thaliana GIGANTEA gene and its
over-expression in rice leads to late flowering under
both short day and long day conditions (Hayama et al.
2003). Eight additional peaks were detected with our
analysis. These peaks are good candidates for further
analysis in order to identify novel genetic diversity relat-
ing to the flowering pathway of African rice. Among
those peaks, four were specific to early sowing and three
to late sowing. This is not surprising as those two condi-
tions likely address different flowering regulation path-
ways. A study in A. thaliana found for example less than
10 overlapping QTLs over 37 in total between two dif-
ferent conditions (Brachi et al. 2010). The peak common
to both sowing conditions encompassed a total of 13
genes. Among those, a CO-like family gene is present
(LOC_Os08¢15050). This gene might be of interest as
several genes from this family are involved in flowering
control in long day or short day conditions in rice, as
well as several homologs in A. thaliana, especially CON-
STANS (CO) gene known to promote flowering in long
day conditions (Putterill et al. 1995; Zhang et al. 2017).
Spikelet number per panicle and primary branch num-
ber were the main traits contributing to the diversity of
panicle architecture observed in this population. However,
only few SNPs were identified for the SpN and PBN traits
over the 3 methods used. A possible explanation for this
result is that these traits might be associated with a large
number of QTLs of low effect sizes, and may consequently
be difficult to assess using the present GWAS panel.
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Several genes implicated in the regulation of panicle de-
velopment and/or architecture were previously reported
in O. sativa (Xing and Zhang 2010; Wang and Li 2011;
Teo et al. 2014). Only two genes recently characterized,
namely NAL8 and OsFMDLI, which are associated to
spikelet number and the development of leaf and
flower, respectively, (Chen et al. 2019; Tao et al. 2018)
were associated to panicle morphological trait diversity
in O. glaberrima using our cutoff. Several association
studies of panicle morphological trait diversity have
been recently conducted for O. sativa (Bai et al. 2016;
Crowell et al. 2016; Rebolledo et al. 2016; Ta et al
2018; Yano et al. 2019). Only a few overlaps of GWAS
regions were observed between the two rice crop
species, including a cluster of GWAS sites related to
panicle and yield traits reported on chromosome 4 in
O. sativa (Crowell et al. 2016).

This would suggest that the intra-specific variation in
the African rice species for flowering time and panicle
architecture might rely more on specific factors, without
excluding the fact that the orthologs of genes identified
in O. sativa are also important for the control of these
traits in O. glaberrima. For the specific genomic regions
identified in this study, further work should lead to the
precise identification of genetic elements governing di-
versity in African rice.

Quantitative Resistance to RYMV in O. glaberrima and
Major Resistance Genes

The regions identified as being associated with resistance
against RYMV did not overlap with QTLs of partial re-
sistance against RYMV previously identified in O. sativa
(Boisnard et al. 2007), suggesting that different genes
and pathways may lead to resistance. However, RYMV3,
a major resistance gene against RYMYV identified in O.
glaberrima species, is located in the main cluster of re-
gions found to be associated with quantitative resistance
in this study. The main candidate resistance gene for
RYMYV3 belongs to the family of nucleotide-binding do-
main and leucine-rich repeat containing (NLR) genes
(Pidon et al. 2017), many of which are involved in patho-
gen recognition and effector-triggered immunity (de
Ronde et al. 2014). NLR genes frequently act as determi-
nants of high and monogenic resistance (de Ronde et al.
2014) but a role in quantitative resistance has also been
clearly established (Wang et al. 1999; Hayashi et al.
2010). NLR genes are known to be frequently organized
into clusters and several additional NLR genes, anno-
tated in the close vicinity of the RYMV3 candidate gene
might also be good candidates for quantitative resist-
ance. The RYMV3 gene, or adjacent NLR genes, might
thus harbor both alleles with quantitative effects and al-
leles with strong effects on RYMYV resistance. In addition
to the above, genes encoding protein domains implicated
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previously in plant-virus interaction, such as dnaJ do-
main containing protein (Lu et al. 2009; Zong et al.
2020) or kelch repeat protein (Thiel et al. 2012), were
also found to be located in or close to resistance associ-
ated regions (Additional file 14: Table S6). Further stud-
ies should be conducted to characterize the different
candidate genes and the diversity of resistance pathways
to RYMV in African rice.

Relationship Between Environment-Related Variables and
O. glaberrima Diversity

We did not find any significant association between the
first PCA axis for either the set of bioclimatic variables
or the monthly average maximal temperature. This can
be due to the highly polygenic determination of these
traits and the limited power of our setup to detect small
effect variants.

Several candidate regions in relation with temperature
variables have been identified that will require a more in-
depth study in order to gather variations of interest for
breeding purposes (see Additional file 14: Table S6). Such
regions might encompass interesting genes for genetic im-
provement in the context of a changing climate. More
studies will have to develop on this basis and we provide
here the first list of candidate polymorphisms linked to
environment response in the African rice.

Conclusions

We report on the results of an extensive Genome Wide
Association Study carried out for several traits of agrono-
mical interest on African rice. As of interest for farmers
and breeders, we also carried out the first GWAS analysis
to date of climate variables in relation to African rice.

Our analysis pinpointed some genes already identified as
key factors for the different traits studied as candidate genes.
For instance, RYMV quantitative resistance may involve the
major resistance gene RYMV3, and flowering time diversity
may also be controlled by the ortholog of OsGI gene, as pre-
viously reported in O. sativa. Identifying adaptive polymor-
phisms among these candidates and functional validation
will be needed to reinforce our results.

Besides, other associated regions did not contain any obvi-
ous candidate genes, suggesting that O. glaberrima likely har-
bors an original diversity. Interestingly, for all the characters
studied, most of the genomic regions identified were specific
to the O. glaberrima species compared to O. sativa, suggest-
ing that the intra-specific variation in the African rice species
for RYMYV resistance, flowering time and panicle architecture
might rely on specific factors. Further studies will lead to the
precise identification of genetic elements governing diversity
and local adaptation, resistance or tolerance to biotic and
abiotic stresses in African rice.
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Material and Methods

Genotypic Data

Single nucleotide polymorphisms (SNPs) from 163 high-
depth re-sequenced O. glaberrima accessions were used in
this study (Cubry et al. 2018). SNPs were identified based
on mapping to the Oryza sativa japonica cv. Nipponbare
high quality reference genome in terms of assembly and
annotation (Kawahara et al. 2013). The bioinformatic
mapping pipeline, software and SNP filtering steps that
were used are described in Cubry et al. (2018).

SNPs with more than 5% missing data (minor fraction
of total SNP set) were filtered out (Cubry et al. 2018). As
missing data can reduce the power of association studies
(Browning 2008; Marchini and Howie 2010), we imputed
the remaining missing data based on a matrix
factorization approach using the “impute” function from
the R package LEA (Frichot and Francgois 2015). This ap-
proach uses the results f ancestry estimation from a
sparse non-negative matrix factorization (SNMF) analysis
to infer missing genotypes (Frichot et al. 2014). In
sNMF, we set K to infer four clusters and kept the best
out of 10 runs based on a cross entropy criterion.

Phenotyping of Flowering Time and Panicle Morphology
Phenotyping of flowering time and panicle morphology was
performed near Banfora (Burkina-Faso) under irrigated field
conditions at the Institut de I'Environnement et de
Recherches Agricoles (INERA) station in 2012 and 2014.
Plants were sown at two different periods in the same year:
the first at beginning of June (“early sowing”) and second in
mid-July (“late sowing”). A total of 15 plants per plot of 0.5
m?* were grown. The field trials followed an alpha-lattice de-
sign with two replicates (Patterson and Williams 1976) per
date of sowing per year. Each single block included 19 acces-
sions (i.e. 19 plots). In total, 87 O. glaberrima accessions were
planted in 2012 and 155 in 2014.

Flowering date (DFT) was scored when 50% of the
plants for a given accession harbored heading panicles
for both early and late sowings in 2012 and 2014 (Table
1). Fourteen days after heading date, the three main pan-
icles from three central plants per plot per repeat were
collected (i.e. nine panicles/accession/repeat) from the
early sowing only, over the 2 years. Each panicle was
fixed on a white paper board, photographed and pheno-
typed using the P-TRAP software allowing the quantifi-
cation of eight morphological traits (AL-Tam et al
2013) (see Table 1). All statistical analyses of the dataset
were performed using R (R core team 2020) packages
ade4 (Dray and Dufour 2007) and corrplot (Wei and
Simko 2017) as described in Ta et al. (2018).

RYMV Resistance Phenotyping
Resistance was evaluated based on ELISA performed on
infected plants cultivated in the greenhouse, under
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controlled conditions. As high resistance to RYMV has
been already well studied in African rice, we excluded
highly resistant accessions, i.e. in which no virus can be
detected with ELISA (Pidon et al. 2020), and we focused
only on quantitative resistance. We therefore assessed re-
sistance on a set of 125 accessions. Two varieties were
used as susceptibility controls, IR64 (O. sativa ssp. indica)
and Nipponbare (O. sativa ssp. japonica), and one as a
high resistance control, Tog5681 (O. glaberrima). Three
replicate experiments of all varieties were performed. In
each experiment, plants were organized in two complete
blocks with four plant replicates per accession.

Plants were mechanically inoculated 3 weeks after sow-
ing with CI4 isolate of RYMV (Pinel et al. 2000). A single
batch of inoculum for all replicate was prepared, plants were
inoculated with a needleless syringe on two points at the
basis of the last emerged leaf. Four discs of 4 mm diameter
were cut on the last emerged leaf of each plant 17 and 20
days after inoculation (dai) and discs from the four plants of
the same block were pooled. Samples were ground with a
QIAGEN TissueLyser II bead mill and resuspended in
750 uL. 1X PBST (Phosphate buffer saline with Tween 20).
Virus content was estimated by DAS-ELISA (Pinel-Galzi
et al. 2018). Preliminary tests on a subset of samples were
performed to assess the dilution that best discriminated be-
tween samples. ELISA tests were finally performed at dilu-
tions of 1/1000 for 17 dai sampling date and 1/2500 for 20
dai sampling date. Optical density values were normalized
according to a standard range of virus dilutions loaded on
each ELISA plate in order to correct a putative plate effect
and the average of the measures of the two blocks was calcu-
lated in each replicate experiment. As virus content was
highly correlated between 17 and 20days after infection
(R? = 0,81), the resistance level was estimated as the mean of
the two sampling dates. Resulting variables were named
RYMV1, RYMV2 and RYMV3 for the three different experi-
ments (Table 1).

Environmental Variables

For accessions with geographical sampling coordinates,
we retrieved information for 19 climate-related variables
(referred to here as bio) from the WORLDCLIM database
at a 2.5 min resolution (Hijmans et al. 2005). We also re-
trieved the average monthly maximum temperature (re-
ferred to here as Tmax). We first performed a Principal
Component Analysis (PCA) on each set of variables to
build uncorrelated composite variables. PCA were per-
formed using R package LEA (Frichot and Francois 2015).
Association studies were performed using the first two
components of each PCA (Table 1).

Treatment of Phenotypic and Environmental Variables
For each variable (Table 1; Additional file 1: Table Sla),
we plotted the histogram of the trait distribution data as
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well as a quantile-quantile plot to visually assess the nor-
mality (Additional file 3: Fig. S1). We additionally per-
formed two tests of normality, the Shapiro-Wilkinson’s and
the Anderson-Darling’s statistics (Additional file 2: Table
S2a). These analyses were made using the base graphics and
nortest (Gross and Ligges 2015) packages for R.

As some of the variables did not fit a normal distribu-
tion, we applied a Box-Cox transformation of the data to
approximate the normality (Table 1; Additional file 1:
Table S1b). To do this transformation, we used the fore-
cast package for R (Hyndman and Khandakar 2008).

The Box-Cox transformation writes as follow:

-1

B(x,A) = if A= 0 and B(x,0) = log(x) if A =0

We estimated the N parameter of the transformation
using the BoxCox.lambda() function with the « loglik »
argument (i.e. using a maximum log likelihood ap-
proach). We then applied the transformation using the
estimated A\ with the BoxCox() function. As some vari-
ables (typically the environment variables) had some
negative values that could prevent the use of the trans-
formation, we used a translation of the data whenever
negative values occurred in the variable with the follow-
ing formula: flx) =x + 1 - min(x) prior to apply the Box-
Cox transformation. The histograms and quantile-
quantile plots have been made again, as well as the nor-
mality tests for the resulting transformed variables (Add-
itional file 2: Table S2b and Additional file 3: Fig. S1).

Apart from climate-related variables, each trait re-
sulted from the combination of at least two repetitions.
If one of the repetitions failed to reach the normality
test, we used the transformed dataset for all repetitions.
For climate variables, we used the transformation when-
ever the variable failed to pass the normality test.

Heritability was estimated for the following phenotypic
trait: flowering time, panicle morphology and resistance to
RYMYV virus. We used a mixed model to estimate the inbred
line variance, the block, the year and the residual variance.
Raw (untransformed) data was used for this specific analysis.
Heritability was calculated as the ratio of the line variance di-
vided by the line variance and the residual variance (https://
plant-breeding-genomics.extension.org/estimating-heritabil-
ity-and-blups-for-traits-using-tomato-phenotypic-data/).

Linkage Disequilibrium

In order to assess the limits of the GWAS analysis, we
computed the genome-wide Linkage Disequilibrium
(LD) of our sample using the PopLDdecay software
(Zhang et al. 2019). We used the imputed VCF as an in-
put and specified the default parameters both for the
analysis and the plotting. The genome-wide LD decay
was then visually assessed.
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Genetic Structure Assessment

In order to efficiently control for the confounding effect
of individual’s relatedness, we assess the population gen-
etic structure of our sample using the sparse non-
negative matrix factorization (sNMF) approach imple-
mented in the R package LEA. We assumed a number of
ancestral groups (K) between one and 10 and we made
five repetitions of the algorithm for each K. In order to
evaluate which K best describe our data, we computed
the cross-entropy criterion for each K and plotted it. We
then selected the run for the considered K which exhib-
ited the lowest cross-entropy and used it to plot the an-
cestries coefficient of each genotype. The estimated K
was subsequently used as an input for some association
genetics methods.

Geographic Mapping of Phenotypic Variables and Link
with Genetic Structure

We used the raw data to compute mean values of the
quantitative traits under consideration in this study for
the accessions having sampling coordinates in their pass-
port data. We then plotted these data using the ggplot2
(Wickham 2016) package for R.

To assess the impact of genetic structure on the pheno-
typic variables, we computed the Spearman’s rank correl-
ation between the raw phenotypic values and each of the
ancestry components retained using the rcorr function of
the Hmisc R package (Harrell 2019). We then plotted the
resulting matrix as a correlogram using the R package
corrplot (Additional file 8: Fig. S5). To assess the signifi-
cance of the results, we used either a p-value <0.01
threshold (Additional file 8: Fig. S5a) or an FDR approach
with a 5% threshold (Additional file 8: Fig. S5b), calculated
using the qvalue R package (Storey et al. 2019).

Association Studies

For each trial, SNPs displaying a minimal allele fre-
quency (frequency of the minor allele) lower than 5%
were filtered out. We first adjusted a simple linear model
(Analysis of variance, ANOVA) to associate phenotype
and genotype. This simple method did not take into ac-
count any putative confounding factor and allowed us to
assess whether taking into account relatedness and/or
population structure could reduce false positive rates.
Two classes of methods accounting for confounding fac-
tors were used: 1) mixed models using kinship matrix
and/or population structure (Yu et al. 2006); and 2) la-
tent factor methods (Frichot et al. 2013). We used both
mixed linear models MLM (Zhang et al. 2010) as imple-
mented in GAPIT R package (Lipka et al. 2012) and
EMMA (Kang et al. 2008) as implemented in R package
EMMA. For EMMA, the kinship matrix was estimated
using the emmakinship function. For MLM (Q+K
model), the kinship (K matrix) was computed using the
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Van Raden method and the first three principal compo-
nents (PCs) of a PCA of genomic data were used as the
Q matrix. The PCs were used to correct for population
structure only for the MLM method. Finally, we used la-
tent factor methods (Frichot et al. 2013) that jointly esti-
mated associations between genotype and phenotype
and confounding factors. We used the R package
LEMM2 (Caye et al. 2019) to perform these analyses.
We first made the estimation of the confounding factors
by using a subset of SNPs obtained by applying a 20%
MAF filter, and we considered four latent factors (Cubry
et al. 2018). We then used the resulting confounding
matrix for the analysis of genotype/phenotype associ-
ation. The results of all analyses were graphically repre-
sented by using a QQ-plot to assess confounding factor
correction and Manhattan plots (R package qqman,
Turner 2014). We used a 10”° p-value threshold to se-
lect candidate SNPs for each method. An additional false
discovery rate (FDR) estimation was realized using the R
package qvalue (Storey et al. 2019).

GWAS analysis was performed separately for each year
and trial (see Additional file 1: Table S1). P-values ob-
tained for the same traits or the same planting data were
combined across experiments using Fisher's method
(Sokal and Rohlf 2012). We defined genomic regions for
each trait using a genomic window approach, i.e. when
two consecutive significant SNPs were distant from less
than 50kb, they were clumped together in the same re-
gion. We finally applied a filter on the selected regions by
considering as candidate regions those detected at least by
two methods. Annotation of retained candidate regions
was performed by intersecting the candidate regions with
the genome annotation data for MSU7 (Kawahara et al.
2013), considering genes within the defined region and ex-
tending 25 kb upstream and 25 kb downstream.

Finally, for flowering traits, we established a list of known
genes of particular interest from published data (Tsuji et al.
2011; Hori et al. 2016). This “expert” list was then used to as-
sess the performance of our GWAS approach to retrieve
these potential candidates. We used a G-test to assess en-
richment of candidates in our list of identified genes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512284-020-00424-1.

N

Additional file 1: Table S1. Phenotypic data used for genome-wide as-
sociation analyses. Flowering time (DFT), rachis length (RL), primary
branch number (PBN), primary branch average length (PBL), secondary
branch average length (SBL), primary branch internode average length
(PBintL), secondary branch number (SBN), secondary branch internode
average length (SBintL) and spikelet number (SpN) were evaluated in field
conditions in 2012 and 2014. Resistance to RYMV was evaluated in green-
house conditions during three experiments (RYMV1, RYMV2, RYMV3)
shifted of about 1-2 months. Environmental data were extracted from
the worldclim database at available sampling locations. A Principal
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Component Analysis was then performed on i) the whole set of variables
and i) only maximal temperature related ones. The two first axes of both
these PCA were then used for association analyses and are reported in
this table. A Box-Cox transformation was applied to the different data set
in order to approximate the normality. The “T_" prefix was added to vari-
ables names to distinguish non-transformed and transformed variables.
(XLS 161 kb)

Additional file 2: Table S2. Statistics of the Shapiro-Wilkinson and
Anderson-Darling normality tests, applied to the different non-
transformed (a) and transformed variables (b).

Additional file 3: Figure S1. Histograms of trait distribution and
quantile-quantile plots for each non-transformed and transformed
variables.

Additional file 4: Table S3. Heritability estimates of the different traits.
Heritability was estimated for each phenotypic trait: flowering time,
panicule morphology and resistance to RYMV virus. The analysis was
done for flowering time (FT), spikelet number (SpN), primary branch
number (PBN), secondary branch number (SBN), rachis length (RL),
primary branch average length (PBL), secondary branch average length
(SBL), primary branch internode average length (PBintL), secondary
branch internode average length (SBintL) and RYMV virus content based
on the mean of estimation at 17 and 20 days after infection (RYMV). We
used a mixed model to estimate the inbred line variance, the bloc, the
year and the residual variance. Heritability was calculated as the ratio of
the line variance divided by the line variance and the residual variance
(https://plant-breeding-genomics.extension.org/estimating-heritability-
and-blups-for-traits-using-tomato-phenotypic-data/). (ODS 10 kb)

Additional file 5: Figure S2. Genome wide Linkage disequilibrium (LD)
decay.

Additional file 6: Figure S3. Structure of the population. (a) evolution
of the cross-entropy criterion with increasing K, (b) bar plot of ancestries
membership considering K= 4 ancestral population.

Additional file 7: Figure S4. Geographic distribution of traits. We
plotted the mean value of each trait for accessions having sampling
location in their passport data.

Additional file 8: Figure S5. Correlations between traits and structure.
For each ancestry group (A1 to A4), we made a Spearman’s rank
correlation test and plotted it as a correlogram. Colors sign the intensity
of the correlation and white stars were added when the correlation was
significant given the threshold retained, i.e. either a p-value cutoff of 0.01
(a) or a False Discovery Rate of 5% (b).

Additional file 9: Figure S6. Linear scale QQ-plots corresponding to as-
sociation analysis performed independently on each trait and repetition.
Three different methods (EMMA, LFMM, MLM) taking into account re-
latedness and/or structure were used for association and ANOVA was
used as a benchmark. For a given trait, the transformed data were used if
at least one of the replicates failed to reach normality, otherwise non-
transformed data were used.

Additional file 10: Figure S7. Manhattan plots. Association analysis
were performed independently for each trait and repetition and based
on three different methods (EMMA, LFMM, MLM). The transformed data
were used if at least one of the replicates failed to reach normality. P-
values obtained for each replicate were then combined using a Fisher
combined probability test method to obtain the final p-values
represented in this Manhattan plots. The 10™° thresholds are indicated
by red lines.

Additional file 11: Figure S8. Log scale QQ-plots corresponding to as-
sociation analysis performed independently on each trait and repetition.
Three different models (i.e. EMMA, LFMM, MLM) taking into account re-
latedness and/or structure were used for association and ANOVA was
used as a benchmark. For a given trait, the transformed data were used if
at least one of the replicates failed to reach normality, otherwise non-
transformed data were used.

Additional file 12: Table S4. List of the SNPs associated with fifteen
different phenotypic traits. Significant SNPs were identified based on
three different methods (EMMA, LFMM and MLM), the Fisher combined
probability test method to combine several repetitions of phenotypic

data and a 10 ° p-value threshold. For each trait, the p-values and g-
values obtained with the different methods are indicated when the p-
values were significant. (XLS 349 kb)

Additional file 13: Table S5. List of the genomic regions associated
with four different categories of phenotypic traits. Regions were defined
based on 50 kb windows around the significant SNPs detected with any
of the three models. Overlapping regions were combined into a single
one. Only regions detected with at least two methods were retained. The
chromosome (Chr), the starting (Position 1) and ending (Position 2)
positions, the size of the region (Intervals) in base pairs, the number of
significant SNPs included (Sign_SNPs_nb) and the lowest p-values
obtained with the different methods are indicated. Sheets “RYMV" and
"Tmax"concerned the regions identified for the resistance to RYMV and
the maximum temperature related variables, respectively. The sheet
“Flowering” concerned regions identified with the early sowing flowering
time (Early) or the late sowing flowering time (Late) traits, as indicated in
the columns “Trait 1" and "Trait 2". The sheet “Panicle” concerned regions
identified with rachis length (RL), primary branch average length (PBL),
primary branch internode average length (PBintL), secondary branch
number (SBN), secondary branch average length (SBL), and secondary
branch internode average length (SBintL), as indicated in the columns
“Trait 1" and “Trait 2".

Additional file 14: Table S6. List of genes located in each of the
regions associated with four categories of phenotypic traits. Gene ID and
annotations refer to MSU7 (Kawahara et al. 2013). The region names refer
to the names attributed in Table S5. (XLS 105 kb)

Additional file 15: Table S7. Expert list of genes previously described
as involved in flowering time in Asian rice and test of enrichment of the
list of genes detected by our association analysis. Fold-enrichment and
G-test associated p-value are reported for our retained threshold (p-value
cutoff of 107> and at least two methods to define a region) and three al-
ternative ones (p-value cutoff of 10~* and two methods; p-value cutoff of
10™°; p-value cutoff of 10~ 4.
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