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Abstract
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Background: Carbon (C) and nitrogen (N) are two fundamental components of starch and protein, which are
important determinants of grain yield and quality. The food preferences of consumers and the expected end-use of
grains in different rice-growing regions require diverse varieties that differ in terms of the grain N content (GNC)
and grain C content (GCQ) of milled rice. Thus, it is important that quantitative trait loci (QTLs)/genes with large
effects on the variation of GNC and GCC are identified in breeding programs.

Results: To dissect the genetic basis of the variation of GNC and GCC in rice, the Dumas combustion method was
used to analyze 751 diverse accessions regarding the GNC, GCC, and (/N ratio of the milled grains. The GCC and
GNC differed significantly among the rice subgroups, especially between Xian/Indica (X) and Geng/Japonica (GJ).
Interestingly, in the GJ subgroup, the GNC was significantly lower in modern varieties (MV) than in landraces (LAN).
In the X/ subgroup, the GCC was significantly higher in MV than in LAN. One, six, and nine QTLs, with 55
suggestively associated single nucleotide polymorphisms, were detected for the GNC, GCC, and (/N ratio in three
panels during a single-locus genome-wide association study (GWAS). Three of these QTLs were also identified in a
multi-locus GWAS. We screened 113 candidate genes in the 16 QTLs in gene-based haplotype analyses. Among
these candidate genes, LOC_0s01g06240 at gNC-1.1, LOC_0s05g33300 at qCC-5.1, LOC_Os01g04360 at gCN-1.1, and
LOC_0s05g43880 at gCN-5.2 may partially explain the significant differences between the LAN and MV. These
candidate genes should be cloned and may be useful for molecular breeding to rapidly improve the GNC, GCC,

Conclusions: Our findings represent valuable information regarding the genetic basis of the GNC and GCC and
may be relevant for enhancing the application of favorable haplotypes of candidate genes for the molecular
breeding of new rice varieties with specific grain N and C contents.
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Background

As a staple food for more than half of the global popula-
tion, rice is one of the most widely grown cereals world-
wide and is critical for food security. Additionally, it is
the source of about 25-50% of the daily protein intake
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of humans in developing countries, especially in Asia
(Deng et al. 2019). Carbon (C) and nitrogen (N) are two
fundamental components of starch and protein, which
are important determinants of grain yield and quality
that influence the milling, appearance, eating and cook-
ing qualities, nutritional qualities, and health benefits of
grains (Martin and Fitzgerald 2002). The C/N ratio,
which reflects the relative strength of C and N metabol-
ism, is useful for evaluating the metabolic balance be-
tween C and N and the growth vigor in crop plants (Xu
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et al. 2018). Starch and protein account for 70-80 and
7-10% of the components in the rice endosperm, re-
spectively. The synthesis of starch from sugars (or other
carbohydrates) requires less energy than the production
of other substances in the rice grain, and is conducive to
dry-matter accumulation and high yield. The amino acid
content in rice is relatively balanced compared with that
of other crops, including wheat and maize (Peng et al.
2014). Thus, increasing the grain N content (GNC),
grain C content (GCC), and C/N ratio in milled rice
is very important for improving the rice nutritional
quality and yield. The economic development in Asia,
with China as an example, has altered the rice breed-
ing strategy from blindly pursuing higher yield to pay-
ing equal attention to high yield and quality as well
as decreasing production costs, but maintaining safety
(Tang et al. 2017).

Amylose and amylopectin are two types of glucan
polymers in starch that are synthesized via the synergis-
tic effects of several enzymes (Jeon et al. 2010). Amylose
is mainly composed of a linear chain of alpha-1,4-linked
glucose residues, and is synthesized in a reaction cata-
lyzed by the Wx-encoded granule-bound starch synthase
I (Jeon et al. 2010). Genes at other loci, such as the du
loci, that are under monogenic recessive control have an
additive effect on lowering the amylose content (Yano
et al. 1988). Amylopectin has a multiple-cluster structure
comprising a highly branched glucan with alpha-1,6-
glycosidic bonds, and its synthesis is coordinately cata-
lyzed by the following three classes of enzymes: soluble
starch synthases (SSs: SSI, SSIIa, and SSIIIa), starch
branching enzymes (BEs: BEI, BEIla, and BEIIb), and
starch debranching enzymes (ISA1 and PUL) (Jeon et al.
2010). The OsSSI (SSSI) gene encodes starch synthase I,
which affects the amylopectin structure, but has no sig-
nificant effect on the amylose content (Kawakatsu et al.
2010b). The OsSSIllla (FloS) gene encodes starch syn-
thase I1Ia, which affects the amylopectin structure, amyl-
ose content, and physicochemical properties of rice
grain starch (Zhou et al. 2016). Moreover, OsBEIIb en-
codes an amylase starch branching enzyme (SBE IIb)
that influences the starch structure in rice endosperm
(Lu and Park 2012; Yang et al. 2012).

Rice grain proteins can be categorized as functional
proteins (approximately 10%) and seed storage proteins
(SSPs; approximately 90%) (Yang et al. 2019). On the
basis of solubility-linked physical properties, SSPs com-
prise the following four protein fractions: albumins,
globulins, prolamins, and glutelins (Kawakatsu et al.
2008; Saito et al. 2012). Among these proteins, glutelins
are the most abundant, accounting for about 60-80% of
all SSPs (Makoto et al. 2003). Because of a higher lysine
content and greater digestibility, the nutritional value of
rice glutelin is superior to that of other rice storage
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proteins. Glutelins can be further divided into four
groups (GluA, GluB, GluC, and GluD) based on their
amino acid sequence similarity (Kawakatsu and Takaiwa
2010). Several glutelin genes have been cloned, including
GluA, GluB1, GluB6, GluB7, GluD, and OsGZFI (Kawa-
katsu et al. 2010a ; Wu et al. 2010; Yi et al. 2014). Add-
itionally, considerable effort has been made toward
dissecting the genetic mechanism underlying the rice
grain protein content (GPC) (Ren et al. 2014; Terao and
Hirose 2015; Tian et al. 2013; Wang et al. 2011; Wang
et al. 2010a, b). However, the mechanism mediating the
GPC differences remains relatively uncharacterized
(Yang et al. 2019). The SSPs are controlled by complex
multigene families (Tian et al. 2009). Interestingly, some
of these genes not only regulate starch storage, but also
affect the protein in the endosperm (She et al. 2010;
Wang et al. 2011). The combined effects of OsAGPL2
and OsAGPS2b are very important for the accumulation
of storage substances, such as starch and protein, in the
rice endosperm (Tang et al. 2016).

Most of the above-mentioned isolated genes affecting
the GPC and the grain starch content (GSC) were iden-
tified based on various rice mutants. Therefore, a few fa-
vorable alleles of these genes have been mined for rice
breeding. Although many quantitative trait loci (QTLs)
related to the GPC and GSC have been detected by link-
age mapping (Cheng et al. 2013; Yao et al. 2017; Ye
et al. 2010; Zhang et al. 2008; Zheng et al. 2011) and as-
sociation studies (Chen et al. 2018; Wang et al. 2017; Xu
et al. 2016), most of these studies focused on the crude
protein and starch contents or the individual protein
and starch fractions in milled rice. There have been no
studies on the genetic mechanism controlling the GNC,
GCC, and C/N ratio in milled rice.

In this study, a diverse panel consisting of 751 acces-
sions from the 3000 Rice Genomes Project (3K RGP)
(3K RGP 2014) was evaluated regarding the GNC and
GCC in milled rice to identify related candidate genes in
a genome-wide association study (GWAS) with high-
density single nucleotide polymorphisms (SNPs). This
was followed by a gene-based haplotype analysis. The
objectives of our study were as follows: (1) screen repre-
sentative resources with a distinct GNC, GCC, and C/N
ratio in rice germplasm; (2) identify loci and candidate
genes associated with the GNC, GCC, and C/N ratio;
and (3) mine the favorable haplotypes/alleles of some
important candidate genes in rice germplasm.

Results

Phenotypic Variations and Correlations

A diverse global collection of 751 Oryza sativa L. acces-
sions were evaluated regarding their GNC, GCC, and
calculated C/N ratios (Additional file 1: Table S1). A
broad phenotypic distribution among the diverse rice
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accessions from the 3K RGP implied that substantial
genetic variations controlled these three traits (Fig. 1a).
The average GNC, GCC, and C/N ratio were 1.40%
(0.67-2.82%), 39.3% (32.6-51.1%), and 29.5% (12.9—
56.4%), respectively. An analysis of five rice subgroups
revealed significant differences in these three traits, espe-
cially in the Xian/Indica (XI) and Geng/Japonica (GJ)
comparisons (Fig. 1b). Specifically, the GNC (mean
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1.47%; 0.69-2.70%) and GCC (mean 39.6%; 32.7—-49.7%)
of GJ were higher than the GNC (mean 1.36%; 0.67—
2.82%) and GCC (mean 39.2%; 32.6-51.1%) of XI. In
contrast, the C/N ratio of GJ (mean 28.0%; 14.2—-53.5%)
was lower than that of XI (mean 30.2%; 12.9-56.4%)
(Fig. 1b and Additional file 1: Table S1). Additionally,
the mean values of these three traits (GNC 1.35%, GCC
38.9%, and C/N ratio 29.6%) for Aus were similar to
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Fig. 1 Grain nitrogen content (GNC), grain carbon content (GCC), and the C/N ratio of milled rice and correlations among these traits in rice
subgroups. a Phenotypic distribution of the GNC, GCC, and (/N ratio in the whole population. b The GNC, GCC, and /N ratio in five rice
subgroups. Different letters above the boxplots indicate significant differences among subgroups (P < 0.05) based on Duncan’s test. ¢ Differences
in the GNC, GCC, and (/N ratio between landraces and modern varieties in the GJ and X/ subgroups. *, **, and nd indicate significant differences
at P <0.05, P <001, and no significant difference, respectively (Student's t-test)
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those of XI, which is consistent with their close phylo-
genetic relationship (Wang et al. 2018). However, signifi-
cant differences in the GNC and GCC were observed
between the basmati (Bas) and GJ subgroups, which also
have a close phylogenetic relationship (Fig. 1b). Interest-
ingly, in the GJ subgroup, the mean GNC (1.38%) of
modern varieties (MV) was significantly lower than that
(1.48%) of landraces (LAN), whereas there were no sig-
nificant differences in the mean GNC between the X7
MV and LAN (Fig. 1c). Regarding the GCC, in the XI
subgroup, the mean value was significantly higher in the
MV (39.9%) than in the LAN (39.1%). In contrast, there
was no significant difference in the GCC of the G/ MV
and LAN. These results suggest the GNC and GCC were
affected by intense selective breeding for diverse targets
in GJ and XI. A significant positive correlation between
GNC and GCC was determined for the whole popula-
tion (r=0.30, P<0.001), but the correlation was greater
in XI (r=0.33, P<0.001) than in GJ (r=0.22, P <0.001),
suggesting some differentiation in the GNC and GCC
between the two rice subgroups (Additional file 2: Table
S2). Moreover, significantly negative correlations be-
tween GNC and the C/N ratio and no correlations be-
tween GCC and the C/N ratio, respectively, were
detected for the whole, XI, and GJ populations (Add-
itional file 2: Table S2). These findings imply that the
genetic basis of the GNC and GCC probably differs be-
tween the X7 and GJ accessions.

Single-Locus GWAS for the GNC, GCC, and C/N Ratio

We conducted a single-locus GWAS to identify loci as-
sociated with the GNC, GCC, and C/N ratio in three
panels (whole population, XI, and GJ) (Fig. 2). A total of
2,994,907, 2,118,326, and 1,318,493 filtered SNPs for the
whole population, XI, and GJ panels, respectively, were
used for the association analyses with the LMM of
EMMAX (Kang et al. 2010). On the basis of a significant
1/N (N indicating the effective number of independent
SNPs) calculated with the GEC software (Li et al. 2012),
the Bonferroni-corrected genome-wide P-value thresh-
olds of 2.09x107°% 2.66x10°°% and 6.79x 10™® were
considered to reflect suggestive associations in the whole
population, XI, and GJ panels, respectively (Add-
itional file 3: Table S3). A total of 55 associated SNPs
were detected on chromosomes 1, 2, 3,4, 5,7, 9, and 11
in all three panels, including 3, 40, and 12 SNPs associ-
ated with the GNC, GCC, and C/N ratio, respectively.
These SNPs were located within or neighboring 38 an-
notated genes in the Nipponbare reference genome
IRGSP 1.0 (Additional file 4: Table S4). We combined
adjacent significantly associated SNPs within a linkage
disequilibrium (LD) block as a QTL associated with the
analyzed traits. Specifically, one (gNC-1.1), six (qCC-1.1,
qCC-2.1, qCC-2.2, qCC-5.1, gCC-5.2, and qCC-7.1), and
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nine (qCN-1.1, qCN-1.2, qCN-3.1, qCN-4.1, qCN-5.1,
qCN-5.2, qCN-7.1, qCN-9.1, and qCN-11.1) QTLs were
detected for the GNC, GCC, and C/N ratio, respectively,
in all panels (Table 1).

Multi-Locus GWAS for the GNC, GCC, and C/N Ratio

In general, multiple testing correction methods, such as
the Bonferroni correction method, for modifying the sig-
nificant threshold value to control the false positive rate
in a single-locus GWAS are so conservative that some
associated SNPs may be eliminated. Therefore, we con-
ducted a multi-locus association analysis with the
mrMLM algorithm to solve this problem. This multi-
locus GWAS detected more loci underlying the GNC,
GCC, and C/N ratio than the single-locus GWAS for the
same three panels. We identified 130 significant SNPs
on all 12 chromosomes in at least one of the three
panels, including 45, 34, and 51 SNPs for the GNC,
GCC, and C/N ratio, respectively (Additional file 5:
Table S5). For the GNC, 18, 27, and 4 SNPs were identi-
fied in the whole population, X1, and GJ panels, respect-
ively, with the SNPs explaining 1.58—6.55%, 0.87-6.99%,
and 7.00-14.79% of the phenotypic variations (PVE), re-
spectively (Additional file 5: Table S5). Among these
SNPs, four (rs4 1971938, rs4 30789977, rs6_23599588,
and rs7_26720430) were detected in both the whole
population and XI panels. Regarding the GCC, 11, 13,
and 10 SNPs on all chromosomes, except for chromo-
some 10, were detected in the whole population, X7, and
GJ panels, respectively, with PVE values of 1.34—5.78%,
2.43-5.20%, and 2.93-16.49%, respectively. For the C/N
ratio, 18, 27, and 7 SNPs on all 12 chromosomes were
detected in the whole population, X/, and GJ panels, re-
spectively, with PVE values of 1.79-5.54%, 1.11-5.49%,
and 4.40-8.16%, respectively. Among these associated
SNPs, rs10_1541341 was simultaneously detected in the
whole population and XI panels. Two QTLs, gCN-5.2
and gCN-11.1, detected in the single-locus GWAS were
also identified as SNPs rs5_25521042 in the XI panel
and rs11_25,603,546 in the GJ panel in the multi-locus
GWAS. However, QTLs/genes related to the C/N ratio
were not identified in these two regions, suggesting these
regions may contain a potentially novel gene that should
be finely mapped (Additional file 5: Table S5).

Haplotype Analyses for Candidate Genes

A total of 239 annotated genes located in the 16 QTLs
detected in the single-locus GWAS underwent a haplo-
type analysis, and 113 genes were screened as candidate
genes (Additional file 6: Table S6). These candidate
genes were associated with at least eight plant metabolic
pathways in the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway database (Additional file 6:
Table S6), including the flavonoid biosynthesis pathway.
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Fig. 2 Manhattan and quantile-quantile plots for the single-locus GWAS. a Grain nitrogen content (NC), (b) grain carbon content (CC), and (c) the
C/N ratio for the whole GWAS panel. d NC, (e) CC, and (f) the C/N ratio for the X/ GWAS panel. g NC, (h) CC, and (i) the C/N ratio for the GJ
GWAS panel. The points in the Manhattan plots indicate the —log;(P) value. The horizontal red and blue lines indicate the significant and
suggestive thresholds calculated as follows: 0.05 and 1 divided by the effective number of independent markers in the GWAS panel, respectively

Flavonoids reportedly negatively affect starch synthesis
in rice (Zhan et al. 2017). Four representative candidate
genes were selected for the subsequent comprehensive
analysis (Additional file 7: Table S7) according to the in-
tensity of the association signals in the single-locus
GWAS, the significance of the haplotype analyses
(ANOVA), the biochemically related functions, and the
expression profiles.

For the GNC, six genes annotated based on the Nip-
ponbare reference genome IRGSP 1.0 with at least two
haplotypes at gNC-1.1 (position 2,931,216 to 2,967,102
bp on chromosome 1) were concatenated by SNPs
within the gene coding sequence region. Specifically,
LOC_0s01g06240, which encodes a protein kinase, was
detected as the candidate gene with the most significant
differences (P =9.80E-08) in the mean GNC among six
haplotypes (Additional file 6: Table S6). The frequencies
of all six haplotypes were significantly associated with
the rice subgroups according to Fisher’s exact tests
(Additional file 7: Table S7). Additionally, 94.8 and
76.9% of the accessions with the high-GNC haplotypes
Hap5 (n=77) and Hap6 (n = 39), respectively, as well as
77.9% of the accessions with the low-GNC haplotype
Hap2 (1 =68) belonged to the GJ subgroup. In contrast,
90.3 and 100% of the accessions with the low-GNC hap-
lotypes Hapl (n=370) and Hap4 (n=68), respectively,
belonged to the XI subgroup (Fig. 3a and Additional file
7: Table S7). Moreover, in the GJ subgroup, the fre-
quency of Hap5 increased from 0.16 in LAN to 0.60 in
MYV, whereas the frequencies of the other four haplo-
types (Hapl, Hap2, Hap3, and Hap6) were lower in MV
than in LAN (Fig. 3). In the X7 subgroup, the frequency
of Hapl increased slightly from 0.68 in LAN to 0.85 in
MV. We analyzed the nucleotide diversity (i) and Taji-
ma’s D statistics for a 600-kb region flanking LOC_
0s01g06240 in the XI and GJ subgroups (Fig. 3b, c). The
gy and 7y, were similarly lower for the LOC_
0Os01g06240 region than for the flanking region, ranging
from 0.002 to 0.005 (Fig. 3b). In terms of the allele fre-
quency distributions, Tajima’s D was significantly more
negative at LOC_0Os01g06240 in the XI subgroup than in
the GJ subgroup (Fig. 3c), implying there is an excess of
rare alleles in the X7 subgroup. Moreover, the myn/maN
ratio for LOC_Os01g06240 was 1.226 and 0.838 in the X7
and GJ subgroups, respectively (Fig. 3d), suggesting
LOC_0s01g06240 may have been affected by selective
breeding more in the GJ subgroup than in the XI
subgroup.

Regarding the GCC, our haplotype analysis revealed
four, three, eight, two, and three candidate genes at the
qCC-2.1, qCC-2.2, qCC-5.1, gCC-5.2, and qCC-7.1 QTLs,
respectively (Additional file 6: Table S6). Additionally,
LOC_0s05¢33300, which encodes a Tat pathway signal
sequence family protein, was detected as the candidate
gene with the most significant differences (P = 4.90E-03)
in the mean GCC among six haplotypes carried by at
least 10 accessions (Additional file 6: Table S6). More-
over, 81.4 and 100% of the accessions with the represen-
tative high-GCC haplotypes Hap2 (n =167) and Hap3
(n =81) belonged to the XI and GJ subgroups, respect-
ively. The frequency distributions of these two haplo-
types differed significantly between the XI and GJ
subgroups (Fig. 4a and Additional file 7: Table S7). Fur-
thermore, the myp/man ratio for LOC_0s05¢33300 was
0.83 and 1.00 in the GJ and XI subgroups, respectively
(Fig. 4b). In the XI subgroup, the frequency of Hap2 in-
creased from 0.30 in LAN to 0.36 in MV, whereas the
frequency of Hapl (low-GCC haplotype) decreased from
0.65 in LAN to 0.58 in MV (Fig. 4c). These results likely
partially explain the greater GCC in MV than in LAN in
the XI subgroup (Fig. 1c).

For the C/N ratio, 2, 35, 2, 19, 11, 20, 1, and 1 candi-
date genes were detected at the gCN-1.1, gCN-1.2, qCN-
3.1, gqCN-4.1, gCN-5.1, gCN-5.2, gCN-9.1, and qCN-11.1
QTLs, respectively, based on our haplotype analysis
(Additional file 6: Table S6). Additionally, LOC_
Os01g04360 at gCN-1.1 and LOC_Os05g43880 at qCN-
5.2 were screened as important candidate genes with sig-
nificant differences (P =6.20E-08 and P = 6.90E-10) in
the mean C/N ratio among different haplotypes in at
least 10 accessions (Figs. 5 and 6 and Additional file 6:
Table S6). The LOC_0Os01g04360 candidate gene, which
encodes a hsp20/alpha crystallin family protein, is highly
expressed in specific organs (ovary, embryo, and endo-
sperm) according to a publicly available rice gene ex-
pression profile database [RiceXPro (version 3.0)]
(Fig. 5d). A comparison of the C/N ratios for the five
haplotypes revealed that the representative high-C/N
and low-C/N haplotypes were Hapl and Hap2, with
mean C/N ratios of 30.6 and 26.9%, respectively (Add-
itional file 7: Table S7). Moreover, Hapl and Hap2 were
the major haplotypes in the XI and GJ subgroups, re-
spectively, with significantly different frequency distribu-
tions between the two subgroups (Additional file 7:
Table S7). We determined that 368 of 411 accessions
(89.5%) with Hapl belonged to the X/ subgroup, whereas
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153 of 160 accessions (95.6%) with Hap2 belonged to
the GJ subgroup. The myp/man ratio for LOC_
0Os01g04360 was 0.73 and 1.27 in the GJ and XI sub-
groups, respectively (Fig. 5b). Furthermore, in the GJ
subgroup, the frequency of Hap2 increased from 0.60 in
LAN to 0.79 in MV, whereas the frequency of Hap4
(relatively low-C/N haplotype) decreased from 0.23 in
LAN to 0.02 in MV (Fig. 5¢).

The LOC_0Os05g43880 sequence (encoding a gibberel-
lin 2-beta-dioxygenase) was slightly more diverse in the
XI subgroup than in the GJ subgroup (Fig. 6b). The
Tvv/ TN ratio for LOC_0s05g43880 in the X1 subgroup
was a little higher than that in the GJ subgroup (Fig. 6¢).
Multiple comparisons of the C/N ratios for the seven
haplotypes indicated the representative high-C/N and

low-C/N haplotypes were Hap6 and Hap4, with mean
C/N ratios of 34.1 and 26.5%, respectively (Additional
file 6: Table S6). The relatively low-C/N haplotypes
(Hap2, Hap5, and Hap7) were significantly more abun-
dant in the GJ subgroup, whereas the relatively high-C/
N haplotypes (Hapl, Hap3, and Hap6) as well as one
relatively low-C/N haplotype (Hap4) were mainly de-
tected in the XI subgroup (Fig. 6a and Additional file 7:
Table S7). These results partially explain the significant
differences in the C/N ratio between X7 and GJ (Fig. 1b).
Furthermore, in the GJ subgroup, the frequency of Hap2
(mean C/N ratio of 28.0%) increased from 0.69 in LAN
to 0.91 in MV, whereas the frequency of Hap5 (mean C/
N ratio of 27.8%) decreased from 0.23 in LAN to O in
MV (Fig. 6d), which partially explains the significant
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differences in the C/N ratio between LAN and MV in
this subgroup (Fig. 1c).

Discussion

Simultaneous High-Throughput Phenotyping for GNC and
GCC

The high-throughput and accurate phenotyping for tar-
get traits is currently more important and challenging
than the genotyping by next-generation sequencing in a
large-scale GWAS. In this study, we used an elemental
analyzer based on the Dumas combustion method to
rapidly and accurately determine the GNC and GCC in
a large population set comprising 751 rice accessions.
The application of the Dumas combustion method for
analyzing cereals reportedly produces satisfactorily ac-
curate results over a long period (Beljkas et al. 2010).
The repeatability and reproducibility standard deviations
for analyses of cereals are lower than required by the As-
sociation of Official Analytical Chemists (Beljkas et al.
2010). Compared with the Kjeldahl method (Beljkas
et al. 2010) for analyzing GPC and the chemical oxida-
tion method (Isabella et al. 2004) for analyzing GCC, the
Dumas combustion method is simpler, faster, and

produces fewer system errors when simultaneously ana-
lyzing the GNC, GCC, and C/N ratio of one sample.
Thus, despite the considerable cost and the equipment
required for the Dumas combustion method, it is suit-
able for the high-throughput phenotyping for GNC and
GCC in milled rice.

The GNC and GCC Were Affected by Diverse Selective
Breeding in XI and GJ

Grain quality, which is a complex trait controlled by
multiple genes, influences the milling, appearance, eating
and cooking qualities, and nutritional qualities of rice.
The nutritional quality of rice is mainly affected by the
GPC and amino acid composition. Protein is the second
most abundant component of rice grains, accounting for
7-10% of the rice endosperm dry weight (Martin and
Fitzgerald 2002). The GPC is generally believed to be
negatively correlated with the palatability and cooking
quality of rice (Ning et al. 2010). A high GPC may lead
to densely structured rice grains, which will result in
hard and loose cooked rice (i.e., poor palatability)
(Martin and Fitzgerald 2002). However, a high GPC will
result in rice grains with a high nutritional quality (Long
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et al. 2013). Thus, the breeding targets for improving
rice grain quality largely depend on the food preferences
of consumers and the expected end-use of grains in vari-
ous rice-growing regions worldwide. In this study, the
GCC and GNC, which are two fundamental starch and
protein characteristics that usually affect rice grain qual-
ity, were significantly different among the analyzed rice
subgroups, especially between XI and GJ (Fig. 1b).

The GPC varied considerably between XI and GJ, with
obvious regional differences. There is a high demand for
rice varieties with grains that are rich in energy and nu-
trients among consumers in developing countries (e.g.,
in South and Southeast Asia), where XI varieties are
commonly cultivated. In contrast, improving the rice
grain quality is increasingly becoming a high priority
among consumers in developed countries (e.g., in East

Asia), where GJ varieties are predominant. In the present
study, we revealed that the GNC varied more in the X7
subgroup than in the GJ subgroup (Fig. 1b and Add-
itional file 1: Table S1), which is consistent with the re-
sults of earlier studies on GPC (Chen et al. 2018; Zhou
et al. 2009). However, the mean GNC of XI accessions
was significantly lower than that of GJ accessions (Fig.
1b), which contradicts the findings of the reported stud-
ies on GPC (Chen et al. 2018; Zhou et al. 2009). This
discrepancy may be due to the differences in the ana-
lyzed sample populations among the studies. Interest-
ingly, the GNC was lower in MV than in LAN in the GJ
subgroup, but not in the X7 subgroup, and the GNC in
MV was similar between the XI and GJ subgroups (Fig.
1c). These observations are suggestive of a stronger dir-
ectional selection for the GNC in GJ than in XI. In other
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words, the GNC (or GPC) in modern GJ varieties was
decreased during breeding to improve eating and cook-
ing qualities.

Rice starch quality, which varies considerably between
GJ and XI accessions, greatly influences rice cooking and
processing methods for food and industrial applications
(Umemoto et al. 1999). The substantial difference in the
resistance to starch disintegration between GJ and XI is
attributed to the diversity in the fine structures of the
amylopectin in starch granules (Nakamura et al. 2002).
Starch comprises 90% of the total dry weight of milled
rice, and the amylose content is considered to be the
most important factor affecting eating quality (Pang
et al. 2016). In the present study, the GCC was signifi-
cantly higher in MV than in LAN in the XI subgroup,
whereas a similar significant difference in the GCC was
not detected in the GJ subgroup (Fig. 1c). These results

imply that increasing grain yield was a greater priority
for XI varieties than for GJ varieties among breeding
programs.

Comparisons with the Previously Reported Genes Related
to GPC or GSC

The GPC- and GSC-related known genes near the QTLs
identified in this study provide valuable information for
thoroughly elucidating the putative genetic mechanisms
underlying the GNC and GCC in rice. Although a num-
ber of QTLs for the GPC have been identified in rice
germplasm (Liu et al. 2010; Ye et al. 2010; Zheng et al.
2011, 2012), relatively few have been cloned. A previous
study proved that several mutations in a few genes have
minor effects on the GPC and amino acid composition
(Kawakatsu et al. 2010a). In the current study, some of
the QTLs were only identified in XI or GJ. For example,
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a single-locus GWAS revealed four (gCN-1.2, gCN-7.1,
qCN-9.1, and qCN-11.1) and three (gCN-3.1, gCN-4.1,
and gCN-5.2) QTLs for the C/N ratio that were exclu-
sive to the GJ and XI subgroups, respectively (Table 1).
Moreover, OsAPP6 expression is reportedly associated
with GPC variations only in X1 rice (Peng et al. 2014). A
recent study indicated that OsGIuA2"*" and OsGIuA2-
HET' \which are two OsGIuA2 haplotypes, are present
mainly in GJ and XI varieties, respectively (Yang et al.
2019). Thus, our results provide further evidence that
the differences in the GPC between XI and GJ varieties
depend on the diversity in the genetic architecture (Shi
et al. 1999).

We searched the Oryzabase online resource (https://
shigen.nig.ac.jp/rice/oryzabase/) for known rice genes
that co-localized with the 16 QTLs identified in our
single-locus GWAS. None of the identified genes are
directly related to the GPC or GSC. When we extended
the search to regions adjacent to these QTLs (within
100 kb), three known genes (CCRT, OsBZR1, and
OsPPDKB) related to the GPC or GSC were detected.
Regarding the GCC, gCC-5.2, with the most significant
associated SNP (rs5_29562689, P=7.43x 10" %) in the
whole population panel, was detected close (approxi-
mately 76 kb downstream) to the starch synthesis-related
gene CCRT (Table 1). A previous study proved that
CCRT, which positively regulates starch synthesis in rice
vegetative organs, is responsive to the photosynthate con-
tent and co-regulates the expression of rice genes related
to starch synthesis (Morita et al. 2015). The C/N ratio is
significantly and positively correlated with rice grain yield
(Ye et al. 2014). In the current study, gCN-7.1, with a sug-
gestive association (rs7_23515974, P=2.99 x 10~ % in the
GJ panel, was detected approximately 30 kb from OsBZRI,
which encodes a BR-signaling factor. The overexpression
of OsBZR1 can enhance sugar accumulation and increase
the grain yield. Knocking down this gene decreases the
rice grain weight and starch accumulation. During the
pollen and grain development in rice, OsBZR1 can directly
promote CSA expression, which directly leads to the ex-
pression of genes related to sugar distribution and metab-
olism (Zhu et al. 2015). Additionally, OsPPDKB, which
encodes a regulator of carbon metabolism (Kang et al
2005), is located about 56 kb downstream from gCC-5.1
and qCN-5.1 (19,481,277-19,681,277 bp) on chromo-
some 5. Moreover, OsPPDKB regulates the carbon
flow associated with starch and fat biosynthesis dur-
ing the grain-filling period. Compared with the wild-
type control, the floury endosperm-4 mutant generated
via the insertion of a T-DNA into OsPPDKB has a
significantly higher fat content, a slightly higher GPC,
and a similar GCC (Kang et al. 2005).

Another three known genes related to the GPC and
GCC were detected near the significantly associated
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SNPs in a multi-locus GWAS. Specifically, GIFI, which
encodes a cell wall invertase required for carbon parti-
tioning during the early grain-filling period (Wang et al.
2008), is located near the GCC-associated SNP rsd
20223533 in the GJ panel. Additionally, PFPS, which reg-
ulates carbon metabolism during the rice grain-filling
period (Duan et al. 2016), and OsAlaATI1, which is es-
sential for the regulation of starch storage in rice endo-
sperm (Yang et al. 2015), were respectively detected near
the significant SNPs rs6_7739418 and rs10_13054571 as-
sociated with the C/N ratio in the whole panel. These
results provide insights into the genetic basis of the vari-
ations in the GNC and GCC involving multiple QTLs/
genes.

Utility of the Favorable Haplotypes of Candidate Genes
An apparent strength of the GWAS is that it is conveni-
ent for identifying favorable alleles/haplotypes at associ-
ated loci in a large set of natural populations and for
screening for appropriate germplasm carrying the
target alleles/haplotypes for the subsequent breeding of
new varieties. According to our results, a method com-
bining a single-locus and a multi-locus GWAS is more
powerful than classical bi-parental linkage mapping
methods for identifying QTLs for complex traits con-
trolled by multiple genes. The QTLs and the representa-
tive haplotypes of the candidate genes described herein
(Additional file 6: Table S6) may be useful for future
gene cloning and molecular breeding aimed at rapidly
improving the GNC and GCC in rice.

The synthesis of starch from sugar (photosynthates/
carbohydrates) consumes less energy than the synthesis
of other rice grain components, and is conducive to dry-
matter accumulation and high yield. Additionally, spe-
cific rice-based products, including rice flour (for noo-
dles), rice syrup, and feed rice, require grains that differ
in terms of the GSC and GPC. Rice is an important
source of nutrition for people and animals (livestock and
poultry) in developing countries. Thus, one strategy for
breeding high-yielding varieties with a high GPC in-
volves applying marker-assisted selection to pyramid the
representative high-GCC, high-GPC, and low-C/N al-
leles/haplotypes for LOC_0Os01g06240 (Hap6 and Hap5)
at gNC-1.1, LOC_0s05¢33300 (Hap2 and Hap3) at gCC-
5.1, LOC_0Os01g04360 (Hap2) at gCN-1.1, and LOC_
0s05¢g43880 (Hap4) at gCN-5.2 (Figs. 3, 4, 5 and 6 and
Additional file 7: Table S7). However, there is also a de-
mand in developed countries for rice varieties with
grains that have a relatively low GPC, which enhances
the taste. To satisfy this demand, rice breeders should
focus on applying representative high-GPC and high-C/
N alleles/haplotypes for LOC_0Os01g06240 (Hap4) at
gNC-1.1, LOC_Os01g04360 (Hap5 and Hapl) at gCN-
1.1, and LOC_0Os05g43880 (Hap6 and Hap3) at gCN-5.2
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(Figs. 4, 5 and 6 and Additional file 7: Table S7). Fur-
thermore, the effects of stacking favorable alleles/haplo-
types at these loci will need to be investigated.

Conclusions

The QTLs for the GNC, GCC, and C/N ratio identified
in this study may be useful for clarifying the molecular
mechanism underlying the GNC and GCC. Our findings
may also be relevant for enhancing the application of the
favorable haplotypes of candidate genes during the mo-
lecular breeding of new rice varieties that satisfy the di-
verse demands for the GNC and GCC.

Methods

Rice Germplasm and Evaluation of the GNC and GCC in
Milled Rice

The GNC and GCC of the milled rice grains of 751 ac-
cessions with appropriate and similar heading dates from
the 3K RGP (3K RGP 2014) (Additional file 1: Table S1)
were evaluated. On the basis of the known population
structure and division of subpopulations (Wang et al.
2018), the 751 accessions comprised 475 XI accessions
(73 XI-1A, 29 XI-1B, 74 XI-2, 113 XI-3, and 186 XI-
adm), 231 GJ accessions (136 GJ-tmp, 35 GJ-sbtrp, 35
GJ-trp, and 25 GJ-adm), 27 Aus accessions, 6 Bas acces-
sions, and 12 admixture (adm) accessions. Accessions
were planted in Sanya, China in 2018 and 28-day-old
seedlings were transplanted to field plots with three rows
of eight plants (20 x 17 cm spacing) for each accession.
Two replicates were prepared for each accession. The
management of the field plots followed normal local
agricultural practices.

At maturity, five plants in the middle of the second
row were harvested and bulked for each replicate of
every accession. The grains of each accession were
threshed and air-dried in a greenhouse. When the mois-
ture content of the grains reached 13%, the samples were
prepared for the subsequent analyses as follows. After
milling and crushing, the grain samples were passed
through a 100-mesh sieve, after which 80mg rice
flour was placed in a tin paper cylinder, wrapped, and
pressed to form a medicinal tablet shape. The GNC
and GCC of the milled rice samples were analyzed
with the vario MACRO cube (Elementar Co., Hanau,
Germany), which is based on the Dumas combustion
method. During the measurements, the working tem-
peratures of the combustion tube and reduction tube
were set at 1150 °C and 850°C in the CNS mode, re-
spectively. The helium intake pressure was set at
1200-1250 mbar and the flow rate was approximately
600 ml/min. The mean trait values for the two repli-
cates were used for the GWAS.
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Statistical Analyses of Phenotypic Data

Differences in the mean GNC, GCC, and C/N ratio
among the rice subgroups were evaluated by a one-way
ANOVA and Duncan’s multiple mean comparison test
(5% significance level), which were completed with the
agricolae package in R. Correlation analyses of the three
traits were conducted with the corrplot package in R.

Single-Locus GWAS

The 3K RGP 4.8mio SNP dataset was downloaded from
the Rice SNP-Seek Database (http://snp-seek.irri.org/)
(Alexandrov et al. 2015). The 2,994,907, 2,118,326, and
1,318,493 SNPs with minor allele frequencies > 5% and a
missing data rate < 0.1 filtered by PLINK (Purcell et al.
2007) for the whole population, X7, and GJ panels, re-
spectively, were used for the subsequent association ana-
lyses (Additional file 3: Table S3). The single-locus
GWAS was completed with EMMAX (Kang et al. 2010)
to determine the associations between each SNP and the
GNC, GCC, and C/N ratio of milled rice. A Balding—
Nichols matrix based on the pruned subset of genome-
wide SNP data (with the ‘indep-pairwise 50 10 0.1’ par-
ameter in PLINK) was used to create the kinship matrix.
We calculated the eigenvectors of the kinship matrix
with GCTA (Yang et al. 2011) and then used the first
three principal components as covariates to capture the
variance due to the population structure. The effective
number of independent markers (N) was calculated with
the GEC software (Li et al. 2012) and suggestive P-value
thresholds of association (1/N) were calculated (Add-
itional file 3: Table S3). We identified the genes harbor-
ing or flanking the suggestively associated SNPs and
functionally annotated them based on the Nipponbare
reference genome IRGSP 1.0 (Kawahara et al. 2013). The
Manhattan and quantile-quantile plots for the GWAS
results were created with the R package qqman (Turner
2014). To detect independently associated regions, mul-
tiple suggestively associated SNPs located in one esti-
mated LD block were clustered as one QTL region, and
the SNP with the minimum P value in a cluster was con-
sidered as the lead SNP. Each LD block containing the
detected SNPs was estimated with the ‘--blocks’ com-
mand in PLINK according to the block definition sug-
gested by Gabriel et al. (2002).

Multi-Locus GWAS

The multi-locus GWAS was completed with the same
genotypes and phenotypes used for the single-locus
GWAS and the multi-locus random-SNP-effect
mixed linear model (mrMLM) (Wang et al. 2016) of
the mrMLM package (https://cran.r-project.org/web/
packages/mrMLM/index.html) in R. A critical LOD
score of 3.0 was used for identifying significantly as-
sociated SNPs.
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Haplotype Analysis of Candidate Genes

The haplotypes of all 239 genes annotated based on the
Nipponbare reference genome IRGSP 1.0 (Kawahara
et al. 2013) and located within the 16 detected QTLs in
the single-locus GWAS were classified according to all
SNPs within the coding sequence region of one gene in
the 751 rice accessions. The KEGG pathways associated
with these genes were determined with EXPath 2.0
(Chien et al. 2015). Haplotypes in at least 10 rice acces-
sions were used for a phenotypic comparative analysis.
A one-way ANOVA followed by Duncan’s test were
completed with the agricolae package in R to screen for
candidate genes. Four representative candidate genes
were selected for a comprehensive analysis based on the
intensity of the association signals in the single-locus
GWAS, the significance of the haplotype analyses
(ANOVA), the biochemically related functions, and the
expression profiles. Two-sided Fisher’s exact tests in R
were used to compare haplotype frequencies between
the rice XI and GJ subgroups. Nucleotide diversity (i)
and Tajima’s D value for each 10-kb window across the
genome, with an overlapping 5-kb step size, were calcu-
lated for the 600-kb region flanking the candidate genes
with the Variscan program (version 2.0.3) (Vilella et al.
2005). Gene expression profiles were downloaded from a
rice expression profile database [RiceXPro (version 3.0)]
(Sato et al. 2013).
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