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Abstract

Background: Rice (Oryza sativa) feeds half of the world’s population. Rice grain yield and quality which are
constrained by diseases and mineral nutritions have important human healthy impacts. Plant “fruit-weight 2.2-like”
(FWL) genes play key roles in modulating plant fruit weight, organ size and iron distribution. Previous work has
uncovered that the grains of OsFWL5-oeverexpressing rice accumulated more beneficial element zinc (Zn) and less
toxic element cadmium (Cd) content. However, whether FWL genes play roles in rice resistance remains unknown.

Findings: Here, we validated that one of rice FWL genes OsFWL5 plays a positive role in defense to Xanthomonas
oryzae pv. oryzae (Xoo). Overexpresion of OsFWL5 promotes H2O2 accumulation and cell death. The OsFWL5-
overexpresing plants show activated flg22-induced reactive oxygen species (ROS) generation, and increased
resistance to Xoo, indicating that OsFWL5 functions to increase pathogen-associated molecular pattern (PAMP)-
triggered immunity in rice. The activated defense response is associated with increased the expression of genes
involved in jasmonic acid (JA)-related signaling. Furthermore, Cd can induce rice resistance to Xoo, and OsFWL5 is
required for Cd-induced rice defense response.

Conclusion: Putting our finds and previous work together, OsFWL5 could be a candiate gene for breeders to
genetically improve rice resistance and grain quality.

Findings
Mineral nutrients and diseases constrant crop production
and quality. To increase crop yields, tromendous fertilizers
and pesticide have been used resulting in adverse impacts on
environment (Withers and Lord, 2002; Niño-Liu et al.,
2006). Beside up take essential mineral nutrients (e.g. nitro-
gen, Zn) for orchestrating development and defense re-
sponse, plants also take up non-essential and toxic elements
(e.g. Cd and arsenic) which induce chronic and toxic effects
in humans (White and Broadley, 2009; Zhao et al., 2010;
Clemens and Ma, 2016). As it feeds about half of the world’s
population, rice (Oryza sativa) grian quality is fundamental
importance for human health. Thus, applying genetic ap-
proaches to improve rice plant resistance, to increase the ac-
cumulation of essential nutrients, and to reduce the

concentration of chronic and toxic elements in grains have
very important agricultral and human healthy impacts.
Tomato FW2.2 was identified as a key to control fruit

weight and size (Frary et al., 2000). Plenty of findings
imply that FW2.2-like proteins play various roles in
plant. Arabidopsis FWL genes plant cadmium resistance
1 (AtPCR1) involved in cadmium resistance (Song et al.,
2004), AtMCA1 and AtMCA2 were found to mediate
Ca2+ uptake (Yamanaka et al., 2010). Soybean FWL gene
GmFWL1 was found to affect the nodule organogenesis
in plant interaction with the nitrogen-fixing symbiotic
bacterium Bradyrhizobium japonicum (Libault et al.,
2010). Overexpression of OsFWL5/OsPCR1 increases
rice grain Zn content and reduces Cd content (Song et
al., 2015). However, no FWL gene was designated to be
associated with defense response so far.
Bacterial blight caused by Xoo is one of the most dev-

astating bacterial diseases of rice worldwide. To demon-
strate whether OsFWL5 involving in rice resistance to
Xoo, we first checked the expressional patterns of
OsFWL5 in rice resistant and susceptible interaction
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with Xoo strain PXO341. MKbZH1 carried a transgenic
major disease resistance gene Xa3/Xa26 in the genetic
background of japonica/geng variety Zhonghua 11 (ZH11)
conferring race-specific resistance to Xoo including to
strain PXO341, wild type ZH11 is susceptible to Xoo
strain PXO341 (Cao et al., 2007; Gao et al., 2010; Li et al.,
2012). OsFWL5 showed differential expression patterns in
rice resistant and susceptible interactions (Additional file
1: Figure S1). The transcript level of OsFWL5 was lower in
MKbFZH1 relative to wild type before Xoo inoculation,
while higher transcript level of OsFWL5 was observed in
resistant plants than in susceptible plants at 4, 8, 24, 48
and 72 h after Xoo infection. The differential expression
patterns of OsFWL5 in susceptible and resistant response
in the same genetic background indicated that OsFWL5
might be involved in the rice-Xoo interaction.
We then generated OsFWL5-overexpressing plants

(OsFWL5-oe) by transforming ZH11 with OsFWL5 cDNA
under the control of maize ubiquitin (Ubi) promoter. The
OsFWL5-oe plants displayed a spontaneous lesion mimic
(LMM) phenotype from seedling stage, and developed more
serious LMM at adult stage (Fig. 1a). Many LMM show an
accumulation of reactive oxygen species ROS (including
H2O2) in and around lesions (Lorrain et al., 2003). To test
whether the lesions of OsFWL5-oe plants accumulate H2O2,
we stained the leaves of OsFWL5-oe plants with diaminoben-
zidine (DAB) revealing a strong accumulation of H2O2 in
the OsFWL5-oe plants relative to WT (Fig. 1b). The appear-
ance of LMM in OsFWL5-oe plants promotes us to check
the expression of cell death related gene. Rice NAC4 (a
plant-specific transcription factor) positively regulates pro-
gramed cell death (PCD) and activation of NAC4 expression
promotes PCD (Kaneda et al., 2009). The expression of
NAC4 were up-regulated in OsFWL5-oe plants (Fig. 1c).
These results indicate that overexpression of OsFWL5 pro-
motes H2O2 accumulation and cell death.
Upon pathogen infection, the recognition of PAMPs

by the pattern recognition receptors (PRRs) triggers
PAMP-triggered immunity (PTI) and includes the accu-
mulation of ROS (Jones and Dangl, 2006). Rice cells can
recognize bacterial pathogen PAMP elicitor flg22
through the PRR FLS2 (Takai et al., 2008). Mutations
resulting in constitutive expression of defense mecha-
nisms cause spontaneous lesions. To examine whether
overexpression of OsFWL5 affects ROS production after
PAMP elicitor flg22 treatment, we collected leaves from
the OsFWL5-oe and WT plants and measured the ROS
level after flg22 treatment using a ROS inhibition assay
(Schwacke and Hager, 1992). Tissues of 4-week-old rice
leaves exhibited a ROS burst when they were exposed to
flg22 (Fig. 1d). In OsFWL5-oe plants, the flg22-induced
ROS generation was earlier and higher than that in WT.
These data suggested that overexpressing OsFWL5 en-
hances rice PAMP-triggered immune response.

We further inoculated OsFWL5-oe plants with Xoo strain
PXO341 at the booting (panicle development) stage. The
OsFWL5-oe plants showed increased resistance to Xoo strain
PXO341 compared to WT plants (Fig. 1e; 1f), with the lesion
length ~ 0.5 cm for OsFWL5-oe transgenic positive plants
versus ~ 11.0 cm for negative transgenic plants and WT. The
increased resistance of OsFWL5-oe plants co-segregated with
increased OsFWL5 transcripts. The correlations between
length and OsFWL5 transcripts were− 0.926 (significant at
α= 0.01; n= 15) and− 8993 (significant at α= 0.01; n= 15)
for OsFWL5-oe93 and OsFWL5-oe95 families, respectively.
Bacterial growth analysis showed that the growth rate of
PXO341 on transgenic plants was significantly lower than
the growth rate on WT plants at 4–12 days after infection.
These results suggest that the increased resistance of the
transgenic plants may be attributable to the increased ex-
pression level of OsFWL5.
To further investigate the role of OsFWL5 in rice-Xoo

interaction, we generated OsFWL5-knockout mutants
osfwl5 using CRISPR/Cas9 editing in ZH11. We selected
two 20-nt sequences as target sites for Cas9 cleavage with
one in the 5′ UTR and another one in the first exon of
OsFWL5 gene (Additional file 1: Figure S2). We found
two mutant lines osfwl5–1 and osfwl5–2. osfwl5–1 carries
a 242-base fragment deletion in 5′ UTR and one-base in-
sertion in site 2; osfwl5–2 carries a 678-base fragment de-
letion from site 2 to 5′ UTR of OsFWL5 gene (Additional
file 1: Figure S2). We inoculated osfwl5 lines with Xoo
strain PXO341 at booting stage. osfwl5 lines developed
similar lesion length as WT (Additional file 1: Figure S3a),
indicating that OsFWL5 is not necessary for Xoo resistance
in rice. Together with the results from the above analysis,
these data suggested that OsFWL5 contributes to rice re-
sistance by activating rice basal defense.
The enhanced resistance of OsFWL5-oe plants pro-

moted us to check the expression of defense-related
genes to dissect possible defense pathways mediated by
OsFWL5. AOS2 (allene oxide synthase 2; AY062258) is
involved in JA biosynthesis, JAZ8 (jasmonate ZIM-
domain protein; XP_015612402) associates with the JA-
dependent signaling pathway (Mei et al., 2006; Ke et al.,
2014), WRKY13 antagonistically regulates salicylic acid
(SA)- and JA-dependent signal pathway acting as a posi-
tive regulator in SA-dependent and a negative regulator
in JA-dependent signal pathway, ICS1 (isochorismate
synthase 1, AK120689) is involved in SA biosynthesis
(Qiu et al., 2007), PR1a (for acidic pathogenesis-related
protein 1; AJ278436) is a SA and JA responsive gene (Ke
et al., 2014). The expression levels of AOS2, JAZ8 and
PR1a were significantly higher in OsFWL5-oe plants than
those in WT (Fig. 2a). By contrast, the expression levels
of WRKY13 and ICS1 were significantly lower in
OsFWL5-oe plants than those in WT (Fig. 2a). We also
checked the expression of these genes in osfwl5 mutants
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plants, and results showed that osfwl5 mutants plants ac-
cumulate similar AOS2, JAZ8, PR1a and ICS1 tran-
scripts, and slightly more WRKY13 transcripts relative to
wild type (Additional file 1: Figure S3b). These data indi-
cated that overexpression of OsFWL5 promotes defense

response associated with activated JA-dependent path-
way but repressed SA-dependent pathway.
As OsFWL5 is involved in grain Cd distribution (Song et

al., 2015), we treated wild type ZH11 with Cd to analyze
OsFWL5 expression. Result showed that Cd treated plants
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Fig. 1 Performance of OsFWL5-oe plants. The “a” above bars indicate significant differences compared to wild type (WT) at P < 0.01. Primers and
methods are listed in Additional files 2 and 3. a Lesion mimic phenotype of 8-week-old OsFWL5-oe plants. b DAB staining of H2O2 accumulation
in 8-week-old OsFWL5-oe plants leaves. c NAC4 gene expression analysis in OsFWL5-oe plants leaves. Data are means ± SD (n = 3). d Flg22-
induced ROS burst in the OsFWL5-oe and WT plants. Rice leaf disks were treated with 1 μM flg22 and water. ROS were detected with a luminol-
chemiluminescence assay. Data are means ± SD (n = 3). e Growth of Xoo strain PXO341 on the leaves of OsFWL5-oe plants. Data are means ± SD
(n = 3). cfu, colony-forming units. f Increased resistance of OsFWL5-oe plants to Xoo strain PXO341 was associated with increased OsFWL5
expression. Data are means ± SD (n = 3 for gene expression, and 3 to 5 for lesion length)
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accumulated more OsFWL5 transcripts than mock treated
plants did (Fig. 2b), indicating OsFWL5 expression is in-
duced by Cd. Overexpressing OsFWL5 activates JA-
dependent related signaling, promoting us to test JA-
signaling related genes expression after Cd treatment. We
analyzed AOS2 and PR1a expression and this analysis
showed that Cd could induce AOS2 and PR1a expression
(Fig. 2c). Cd treatment promotes ROS accumulation in
pea plant (Romero-Puertas et al., 2002). These data sug-
gests that Cd might induce plant defense response. To test
this inference, we treated OsFWL5-oe, osfwl5 mutants and
WT with Cd and inoculated with Xoo. Results showed
that Cd induced wild type ZH11 resistance to Xoo (Fig.
2d). Cd did not further increase OsFWL5-oe resistance to
Xoo, although OsFWL5-oe plants accumulated more

AOS2 and PR1a transcripts relative to wild type after Cd
induction (Fig. 2d; 2e). One of the possible reasons is that
OsFWL5-oe plants show high resistance to Xoo with the
lesion length less than 0.5 cm. Cd induced resistance,
AOS2 and PR1a expression was impaired in osfwl5 mu-
tants (Fig. 2d; 2f). These results suggested that OsFWL5 is
required for Cd-induced defense response.
The amino acid sequence of OsFWL5 from ZH11 is iden-

tical to that from another geng/japonica variety Nipponbare
(Additional file 1: Figure S4). The sequence diversity of
OsFWL5 from gene/japonica-type accessions and jing/
indica-type accessions is correlated with Zn content in both
rice and yeast cells, while yeast cells accumulate similar Cd
concentrations expressing both types of OsFWL5 (Song et
al., 2015). In this study, OsFWL5 mediated rice defense may
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Fig. 2 OsFWL5 affects a set of Pathogenesis-related genes expression and rice response to Cd. ** and * indicate significant differences between
Cd treatment and mock treatment at P < 0.01 and P < 0.05, respectively. The “a” and “b” above bars indicate significant differences compared to
wild type (WT) at P < 0.01 and P < 0.05, respectively. Data are means ± SD (n = 3 for gene expression, and 5 to 15 for lesion length). Primers and
methods are listed in additional files 2 and 3. a OsFWL5-oe plants accumulate more JA signaling involved genes AOS2, JAZ8 and PR1a transcripts,
and less SA signaling involved genes ICS1 and WRKY13 transcripts. b OsFWL5 expression was induced by Cd treatment. c AOS2 and PR1a
expression was induced by Cd treatment. d Disease resistance analysis after Cd treatment. OsFWL5-oe plants accumulate more AOS2 and PR1a
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be associated with Cd, suggesting that OsFWL5 from jing/
indica-type accessions might also play a role in rice resist-
ance. Further studies are needed to provide insight on this
perspective.
In conclusion, in this study we have confirmed the

novel function of rice OsFWL5. Activation of OsFWL5
expression in rice triggers H2O2 accumulation and cell
death. We further demonstrated that OsFWL5 positively
regulates PTI response and disease resistance. In
addition, OsFWL5 is required for Cd-induced defense re-
sponse. The grains of OsFWL5-oeverexpressing rice ac-
cumulated more beneficial element Zn and less toxic
element Cd content (Song et al., 2015). So breeders can
use OsFWL5 for rice genetic improvement through
screening alleles with optimal expression level.
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