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Abstract

Roots are fundamentally important for growth and development, anchoring the plant to its growth substrate,
facilitating water and nutrient uptake from the soil, and sensing and responding to environmental signals such as
biotic and abiotic stresses. Understanding the molecular mechanisms controlling root architecture is essential for
improving nutrient uptake efficiency and crop yields. In this review, we describe the progress being made in the
identification of genes and regulatory pathways involved in the development of root systems in rice (Oryza sativa L.),
including crown roots, lateral roots, root hairs, and root length. Genes involved in the adaptation of roots to the
environmental nutrient status are reviewed, and strategies for further study and agricultural applications are discussed.
The growth and development of rice roots are controlled by both genetic factors and environmental cues. Plant
hormones, especially auxin and cytokinin, play important roles in root growth and development. Understanding the
molecular mechanisms regulating root architecture and response to environmental signals can contribute to the
genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
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Background
A major challenge for plants is the complexity of the en-
vironment in which they must survive. Root systems are
vital for addressing this complexity. Roots not only pro-
vide structural support to the aerial organs of the plant,
and enable the acquisition of water and nutrients that
are required for plant growth, but also can monitor en-
vironmental conditions in the soil, such as the water
content, nutrient levels, and the presence of toxic ele-
ments. To ensure an optimal response to changing en-
vironmental situations, root systems are continuously
reshaped by the initiation and elongation of new roots
throughout the growth period, facilitating the plant’s
adaptation to biotic and abiotic stresses (Fukai and
Cooper 1995; Gowda et al. 2011). Understanding the
mechanisms that control root patterning and identify-
ing the genes responsible for post-embryonic root initi-
ation could therefore enable breeders to improve crop
tolerance to abiotic stresses (Coudert et al. 2010).

There are two main types of root systems in plants,
defined by their developmental origin and branching
patterns: taproot systems and fibrous root systems. The
taproot system occurs in dicot plants such as Arabidop-
sis thaliana, tomato (Solanum lycopersicum), and pea
(Pisum sativa), while fibrous root systems occur in
monocots such as rice (Oryza sativa), wheat (Triticum
aestivum), and maize (Zea mays) (Atkinson et al. 2014).
In taproot systems, the primary root is the main root,
and branching consists of secondary, smaller lateral
roots (LRs) and root hairs. A fibrous root system, by
contrast, consists of a dense mass of adventitious roots
(also called crown roots in cereals) that arise from the
stem, which are distinct from the primary root, LRs,
and root hairs (Coudert et al. 2010). Because the pri-
mary root (embryonic root) dies as the monocots age,
the adventitious roots are the main root tissues in the
fibrous root system of monocot plants.
Rice is a monocot model plant that provides a good

experimental system for addressing the molecular mech-
anisms of constitutive and adaptive root branching and
development in fibrous root systems (Gojon et al. 2009).
The genetic regulatory network of root development in
Arabidopsis is not suitable for understanding this process
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in rice which, unlike Arabidopsis, forms many adventitious
roots. Deciphering the molecular regulatory network of
root development in rice is therefore vital for enhancing
our understanding of the genetic regulation of root devel-
opment in the monocots more generally. Furthermore,
a thorough knowledge of the key genes involved in rice
root development will enable breeders to improve the
root system and generate high-yield and nutrient-efficient
cultivars using genetic manipulation or marker-assisted
selection.
With the rapid development of functional genomics,

significant progress has been made in elucidating the
genetic control of root development in rice using mutant
and quantitative trait loci (QTL) analyses. Here, we re-
view the current progress in identifying genes regulating
the development of the rice root system, including the
primary root, crown root, lateral root, and root hairs.
This research will improve our understanding of root
system architecture (RSA) development and ultimately
enable breeders to select for ideal root architectures
promoting higher-yielding crops.

Main Text
Genes Regulating Root Length
Root length is an important component of root architec-
ture that is essential to survival in complex soil condi-
tions. A number of QTLs have been found to play major
roles in regulating root growth and development in rice
(Zhang et al. 2001; Toorchi et al. 2002, 2007; Obara et
al. 2010; Wang et al. 2013; Li et al. 2015a), many of
which were summarized in a previous review (Coudert
et al. 2010); however, most of these QTLs have not
been cloned. Recently, a QTL controlling root thickness
and length, qRT9, was found to encode a basic helix-
loop-helix (bHLH) transcription factor, OsbHLH120.
OsbHLH120 expression was strongly induced by poly-
ethylene glycol, salt, and the drought-response hor-
mone abscisic acid (ABA), suggesting an association
with drought avoidance (Li et al. 2015a).
In addition to these QTLs, several genes regulating root

length have been identified in mutant analyses. The rice
UDP-N-acetylglucosamine biosynthesis-related gene OsG
NA1 controls root elongation, as the loss-of-function mu-
tant Osgna1 exhibited a temperature-sensitive defect in root
elongation, with disrupted microtubules and cell shrinkage
in the root elongation zone (Jiang et al. 2005). A putative
mannosyl-oligosaccharide glucosidase (OsMOGS), required
for N-glycan maturation, was also found to regulate root
elongation by affecting cell division and elongation (Wang
et al. 2014a). Additionally, two sugar metabolism-related
genes were also found to be involved in root develop-
ment. OsDGL1 encodes a DOLICHYL DIPHOSPHOO
LIGOSACCHARIDE-PROTEIN GLYCOSYLTRANSFE
RASE 48 kDa subunit precursor, which has conserved

functions with the oligosaccharyltransferase complex
found in all eukaryotes; mutations in this gene cause a de-
fect in N-glycosylation in the root, resulting in shorter
root cells, smaller root meristems, and root cell death
(Qin et al. 2013). OsCYT-INV1, which encodes an alka-
line/neutral invertase, also plays an important role in root
elongation, as the Oscyt-inv1 mutant produces short
roots. Oscyt-inv1 was found to accumulate sucrose and
had reduced levels of hexose; however, its short-root
phenotype could be rescued by exogenously supplying
glucose (Jia et al. 2008). These studies suggest that
genes involved in sugar metabolism and the sugar-based
modification of proteins play important roles in root
elongation.
Recent studies have demonstrated that root elongation

is also associated with cell wall biosynthesis. OsGLU3 en-
codes a putative membrane-bound endo-1,4-β-glucanase,
which is necessary for root elongation in rice. The Osglu3
mutant produced short roots with lower cellulose con-
tents in its root cell walls, while the exogenous application
of glucose suppressed these phenotypic defects (Zhang et
al. 2012). Moreover, silencing the rice α-expansin gene
OsEXPANSION 8 (OsEXPA8), which encodes a cell wall-
localized protein expressed predominantly in the root and
shoot, resulted in a shorter primary root, fewer LRs, and
short root hairs, supporting the hypothesis that expansins
are involved in root growth by mediating cell wall loosen-
ing (Wang et al. 2014b).
Furthermore, genes involved in a range of physiological

pathways have also been shown to regulate root length in
rice. A T-DNA insertion mutant of a rice glutamic acid
receptor-like gene, OsGLR3.1, was found to produce a short
root, and further analysis revealed that this gene is essential
for the maintenance of cell division and survival in the root
apical meristem (RAM) in early seedlings (Li et al. 2006).
OsGatB encodes a subunit of tRNA-dependent amidotrans-
ferase, an essential enzyme involved in Gln-tRNAGln bio-
synthesis in mitochondria, and may promote primary root
growth by maintaining mitochondrial structure and func-
tion to facilitate cell division and elongation in the root tip
(Qin et al. 2016). OsASL1, an argininosuccinate lyase that
catalyses the final step of arginine biosynthesis, is also re-
quired for primary root elongation in rice, suggesting that a
specific concentration of arginine is required for normal
root growth in rice (Xia et al. 2014). OsELICITOR 5
(OsEL5), a membrane-anchored RING-H2-type ubiquitin
E3 ligase, maintains cell viability after the initiation of root
primordia (Koiwai et al. 2007). In addition, OsSPR1, a
mitochondrial protein with an Armadillo-like repeat
domain, is involved in post-embryonic root elongation
and ion homeostasis (Jia et al. 2011), while OsMYB1,
encoding an R2R3-type transcription factor, regulates
primary root elongation in a phosphate-dependent
manner (Gu et al. 2017).
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Certain phytohormone-related genes can also regulate
rice primary root growth. The auxin transporter mutant
Osaux1 had a longer primary root and shorter root hairs
than the wild type (WT) when grown in hydroponic cul-
ture (Yu et al. 2015), while knock-out lines of OsAUXIN
RESPONSE FACTOR 12 (OsARF12) had shorter primary
roots (Qi et al. 2012). The microRNA miR393 influences
auxin signalling to mediate primary root and adventitious
root development by regulating its target genes, OsTIR1
and OsAFB2, the rice orthologs of the Arabidopsis auxin
receptors TRANSPORT INHIBITOR RESPONSE 1 (TIR1)
and AUXIN SIGNALING F-Box 2 (AFB2), which interact
with OsIAA1, an AUXIN/INDOLE ACETIC ACID (AUX/
IAA) regulatory protein (Bian et al. 2012). Moreover, silen-
cing the expression of DNA TOPOISOMERASE 1 (TOP1),
an essential manipulator of DNA topology during RNA
transcription and DNA replication, strongly reduced rice
root elongation and gravitropism by mis-regulating auxin
signalling and its associated transporters (Shafiq et al.
2017). Ethylene (ET) also appears to be involved in root
development in rice. OsEIL1, a transcription factor in-
volved in the ethylene signalling pathway, promotes rice
root elongation (Mao et al. 2006). In addition, a recent
study showed that the gain-of-function mutant Osethy-
lene responsive factor 2 (Oserf2) formed a shorter root
than the WT, while silencing OsERF2 leads to a
long-root phenotype. Further experiments revealed that

OsERF2 is required for the root response to both ABA
and ethylene signalling (Xiao et al. 2016). Another gene,
SHB, which encodes an AP2/ERF transcription factor, af-
fects gibberellic acid biosynthesis, as well as the elongation
and proliferation of root meristem cells (Li et al. 2015b).
Additionally, recent studies revealed that strigolactones
(SL) are required for the induction of root elongation
by nitric oxide in response to nitrogen and phosphate
deficiencies in rice (Sun et al. 2016). A salicylic acid
biosynthesis-related gene, OsAIM1, is also required for
root growth in rice, through promoting reactive oxygen
species (ROS) accumulation (Xu et al. 2017).
Although about 20 genes required for root elongation

have been identified, most function in different genetic
pathways (Fig. 1); therefore, further research is still re-
quired to elucidate the molecular regulatory mechanisms
of root elongation in rice.

Molecular Mechanisms of Crown Root (Adventitious Root)
Development
Crown roots are one of the most important components
of fibrous root systems, but are absent from taproot sys-
tems. In rice, the crown root primordium originates
from the innermost ground meristem cells adjacent to
the peripheral cylinder of vascular bundles in the stem
(Itoh et al. 2005).
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The first crown root development gene to be identified
was ADVENTITIOUS ROOTLESS 1/CROWN ROOTLESS
1 (ARL1/CRL1), encoding a LOB-domain transcription
factor (Inukai et al. 2005; Liu et al. 2005); the knock-out
mutant arl1, which carries a 20-bp deletion, produced no
adventitious roots or adventitious root primordia through-
out its entire lifespan (Liu et al. 2005), while the allelic line
crl1, containing a single amino acid change, occasionally
produced crown roots at later developmental stages (Inu-
kai et al. 2005). The shoots of the arl1/crl1 mutants are
identical to the WT, however, while fewer LRs were ob-
served on the primary root of the crl1 muant in compari-
son with the WT, the LR numbers on the primary root of
arl1 were not significantly affected (Inukai et al. 2005; Liu
et al. 2005). Furthermore, ARL1/CRL1 is a direct target of
OsARF1, which can be induced by exogenous auxin treat-
ment (Inukai et al. 2005). These results indicate that
ARL1/CRL1 is a specific regulator of crown roots, with a
central role in crown root initiation. Further research is
required to elucidate how ARL1/CRL1 regulates crown
root development.
Physiological studies have provided additional evidence

of auxin playing an important role in crown root devel-
opment, and the growth of functional genomics has
meant that growing numbers of auxin-related genes have
been found to be involved in this developmental process.
Plants overexpressing the auxin biosynthesis gene
OsYUCCA1 have a higher auxin content, which leads to
more crown roots (Yamamoto et al. 2007). Two crown
rootless mutants, crown rootless 4 (crl4) and Osgnom1,
were found to be allelic lines with mutations in a mem-
brane-associated guanine-nucleotide exchange factor of
the ADP-ribosylation factor G protein (GNOM).
GNOM1 regulates the traffic of PIN-FORMED 1 (PIN1)
auxin efflux carrier proteins, and consequently mediates
polar auxin transport, suggesting that appropriate polar-
ized auxin transport mediated by CRL4/OsGNOM1 is re-
quired for crown root initiation (Kitomi et al. 2008; Liu et
al. 2009). Consistant with this, reducing the expression of
OsPIN1 using RNA interference inhibited adventitious
root development, a phenotype that could be rescued
by the exogenous application of α-naphthylacetic acid
(α-NAA), suggesting a role for OsPIN1 in the regula-
tion of adventitious root development via auxin path-
way (Xu et al. 2005). Overexpressing OsRPK1, which
encodes a leucine-rich repeat receptor-like kinase (LRR-
RLK), resulted in undeveloped adventitious roots and LRs,
and a reduced RAM caused by lower expression of most
OsPIN genes, suggesting that OsRPK1 also functions in an
auxin-related pathway (Zou et al. 2014). Moreover, the
gain-of-function mutant Osiaa23, which accumulates an
auxin response protein, had defects in the initiation of its
crown roots and LRs, and maintenance of the quiescent
center (QC) in the root tip (Ni et al. 2011). Recently,

NARROW LEAF 1 (NAL1), was also found to mediate rice
crown root development, as the loss-of-function mutant
nal1 produced fewer adventitious roots. NAL1 encodes
a putative trypsin-like serine/cysteine protease that af-
fects the expression levels of many genes associated
with leaf development and auxin transport; conse-
quently, exogenous auxin treatment rescued the nal1
phenotype (Cho et al. 2014). Another auxin signalling gene,
OsCAND1, named after its Arabidopsis homolog CULLI-
N-ASSOCIATED AND NEDDYLATION-DISSOCIATED 1
(CAND1), is also required for the emergence of crown
roots (Wang et al. 2011). In addition, CHROMATIN RE-
MODELING 4 (CHR4; Zhao et al. 2012), also named
CROWN ROOTLESS 6 (CRL6; Wang et al. 2016), encodes
a member of the large chromodomain, helicase/ATPase,
and DNA-binding domain protein family, and is known to
affect both auxin signalling and crown root development
in rice. OsCHR4/CRL6 is most highly expressed in the
basal region of the stem where crown roots are initi-
ated. The defective crown root formation in crl6 can be
rescued by auxin treatment, and furthermore, the expres-
sion of the OsIAA genes was down-regulated in crl6, pro-
viding evidence that OsCHR4/CRL6 plays a role in crown
root development through the auxin-signalling pathway
(Wang et al. 2016).
Cytokinins (CK) are also essential for crown root de-

velopment in rice. The WUSCHEL-related homeobox
gene OsWOX11, expressed in emerging crown roots and
cell division regions of the root meristem, is an import-
ant player in CK-regulated crown root development
(Zhao et al. 2009, 2015b; Zhou et al. 2017). The loss of
function or down-regulation of OsWOX11 results in a
significant reduction in the number and elongation of
crown roots, whereas overexpressing this gene significantly
promotes crown root growth and dramatically increases
root biomass. Further data showed that OsWOX11 directly
represses OsRR2, a type-A CK-responsive gene expressed
in the crown root primordia, by binding to its promoter
(Zhao et al. 2009). Moreover, OsERF3, an OsWOX11 inter-
acting protein, positively regulates the expression of rice
RESPONSE REGULATOR 2 (RR2) during crown root initi-
ation; the OsERF3-OsWOX11 interaction likely represses
OsRR2 expression during crown root elongation (Zhao et
al. 2015b). OsWOX11 can also recruit the ADA2-GCN5
histone acetyltransferase to form a complex that com-
monly targets and regulates a set of root-specific genes in-
volved in energy metabolism, cell wall biosynthesis, and
the hormone response in the crown root meristem (Zhou
et al. 2017). In addition, studies on another two genes,
CRL5 and CK OXIDASE/DEHYDROGENASE 4 (OsCKX4),
have provided further evidence that CK signalling plays an
important role in crown root emergence and development
(Kitomi et al. 2011; Gao et al. 2014). CRL5 encodes an
AP2/ERF transcription factor, expressed in the stem region
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where crown roots are initiated, and can be induced by ex-
ogenous auxin. The loss-of-function mutant crl5 produced
fewer crown roots and its initiation of crown root primor-
dia was impaired. Further data show that CRL5 positively
regulates the type-A RR, OsRR1, to repress CK signalling,
indicating that CRL5 integrates auxin and CK signalling to
positively regulate crown root initiation in rice (Kitomi et
al. 2011). OsCKX4, a CK oxidase/dehydrogenase (CKX)
family gene, also plays a positive role in crown root forma-
tion; overexpressing OsCKX4 was found to increase the
number of crown roots but reduce the overall height of the
plant. OsCKX4 is a direct target of both the auxin response
factor OsARF25 and the CK response regulators OsRR2
and OsRR3 (Gao et al. 2014). Consistant with this, overex-
pressing another RR gene, OsRR6, also suppressed root
and vegetative development (Hirose et al. 2007). These
data indicate that crown root development is co-ordinately
regulated by auxin and CK signalling.
Increasingly, other plant hormones such as brassinoster-

oids (BRs) and SL have been implicated in crown root initi-
ation and development. The brd1 mutant possesses a
dysfunctional BR biosynthesis gene, OsBR6ox, and produces
fewer crown roots (Mori et al. 2002). The dwarf (d) mu-
tants with impaired SL biosynthesis and signalling produce
fewer adventitious roots than the WT (Arite et al. 2012).
Application of GR24, a synthetic SL analogue, increases the
number of adventitious roots in the SL-deficient mutant
d10, but not in the SL-insensitive mutants d3 and d14, indi-
cating that adventitious root production is positively regu-
lated by SL in rice (Sun et al. 2015).
Though many genes involved in rice crown root devel-

opment have been identified (Fig. 1), our knowledge of
this process is still fragmented, and its molecular mecha-
nisms still require substantial elucidation.

Genes Controlling LR Development
LRs are one of the most important root components, as
they increase the root biomass, enabling the plant to ab-
sorb more water and nutrients as well as providing bet-
ter anchorage in the soil. The molecular mechanisms
regulating LR development are well studied in Arabidop-
sis, which revealed a major role for auxin signalling in
this process (Benkova and Bielach 2010); however, LR
development has not yet been well elucidated in rice, al-
though significant progress has recently been made. Pre-
viously, two mutants, lateral rootless 1 (lrt1) and lrt2,
were identified by their lack of LRs, and were found to
be less sensitive to auxin (Chhun et al. 2003a; Wang et al.
2006; Faiyue et al. 2010). The altered lateral root forma-
tion 1 (alf1) mutant also formed significantly shorter LRs
and was less sensitive to exogenous auxin than the WT
(Debi et al. 2003). Additionally, two other auxin-resistant
recessive mutants, auxin resistant mutant 1 (arm1)
and arm2, failed to produce LRs (Chhun et al. 2003b).

These findings suggest that auxin signalling indeed
participates in LR formation in rice; however, the cor-
responding genes have not been reported, with the ex-
ception of LRT2. Previous results indicate that OsCel9A, a
rice glycoside hydrolase family gene, plays an essential role
in regulating auxin-induced LR primordia formation
(Yoshida et al. 2006). Additionally, NARROW LEAF 2
(NAL2) and NAL3, a pair of duplicated genes encoding
WUSCHEL-RELATED HOMEOBOX 3A (OsWOX3A),
also mediate LR development via the auxin signalling
pathway. The nal2 nal3 double mutant showed a severe
reduction in LR number and an increase in root hair
number and length, and the expression of the OsPIN
genes was also significantly affected (Cho et al. 2013).
Consistant with this, two IAA family genes, OsIAA11
and OsIAA13, were reported to regulate LR formation,
as LR development is inhibited in the gain-of-function
mutants Osiaa11 and Osiaa13; however, the other root
components, including the crown roots and root hairs,
are not affected (Kitomi et al. 2012; Zhu et al. 2012). A
recent study further indicates that the inositol poly-
phosphate kinase OsIPK2 interacts with OsIAA11 to
protect it from degradation and thereby inhibits lateral
root formation (Chen et al. 2017). Another IAA family
gene, OsIAA23, is specifically expressed in the quies-
cent centre cells of the root tip during the development
of primary, lateral, and crown roots, and the gain-of-f-
unction mutant Osiaa23 exhibited a pleiotropic pheno-
type, producing no crown root, no LRs, and no root
cap (Ni et al. 2011).
Using a forward genetic approach, OsCYCLOPHILIN 2

(OsCYP2) was cloned and functionally identified, and
the loss-of-function mutant Oscyp2 was found to ex-
hibit defects in LR formation (Kang et al. 2013).
Map-based cloning revealed that lrt2 is allelic to Oscyp2
(Zheng et al. 2013). OsCYP2 is a cyclophilin-type peptidyl-
prolyl cis/trans isomerase that efficiently catalyses the cis/
trans isomerization of OsIAA11 and directly regulates
its stability; therefore, the OsCYP2 mutation reduces
the interaction between OsTIR1 and OsIAA11, causing
the accumulation of OsIAA11 and inhibiting auxin
signalling-mediated LR development (Jing et al. 2015).
A recent study demonstrated that OsZFP, a C2HC-type
zinc finger protein, can interact with OsCYP2 in the
nucleus to regulate LR development (Cui et al. 2017).
Furthermore, the inhibition of LR initiation was also re-
ported in the auxin influx transporter mutant, Osaux1
(Zhao et al. 2015a). These results indicate that auxin is
a very important regulator of LR development in rice.
Other plant hormone signalling pathways have also

been reported to influence LR growth and development;
for example, HEME OXYGENASE 1 (HOX1) is regulated
by jasmonic acid (JA) to control the formation of LRs
through the production of carbon monoxide (Chen et al.
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2012; Hsu et al. 2012). Transgenic plants overexpressing
DROUGHT STRESS RESPONSE-1 (OsDSR-1), the Arabi-
dopsis ortholog of which encodes a putative calcium--
binding protein, produce much shorter LRs when grown
in media containing ABA, suggesting that OsDSR-1 may
act as a positive regulator during the ABA-mediated inhib-
ition of LR development (Yin et al. 2011).
Moreover, many genes function in other physiological

pathways involved in LR development in rice. SHORT
LATERL ROOT LENGTH 1 (SLL1), encoding a stearoyl-
acyl carrier protein from the fatty acid desaturase
family, affects overall fatty acid desaturation and also
functions as a positive regulator of LR growth (Shelley
et al. 2013). A pivotal factor in DNA replication, ORIGIN
RECOGNITION COMPLEX SUBUNIT 3 (OsORC3), is
also essential for LR development, as the Osorc3 mutant
exhibited a lateral rootless phenotype in a temperature-
dependent manner (Chen et al. 2013).

Similarities and Differences in the Molecular Mechanisms
of Crown Root and Lateral Root Development in Rice
The developmental processes of crown roots and LRs
are both tightly controlled by endogenous genetic pro-
grams that determine cell fate acquisition, cell division,
and root primordia initiation, emergence, and elong-
ation. Studies of rice mutants have led to the identifi-
cation of many genes involved in LR and crown root
development (Additional file 1: Table S1), some of
which are involved in both processes while others are
specifically involved one or the other. OsIAA23, OsARM1,
OsARM2, and CRL4/OsGNOM1 play essential roles in
both LR and CR development (Chhun et al. 2003b; Kitomi
et al. 2008; Liu et al. 2009; Ni et al. 2011), while OsCYP2/
OsLRT2, OsIAA11, OsIAA13, and OsLRT1 are required for
LR initiation but not for the development of crown roots
(Chhun et al. 2003a; Wang et al. 2006; Faiyue et al. 2010;
Kitomi et al. 2012; Zhu et al. 2012; Kang et al. 2013).
OsCAND1 is required for crown root emergence but does
not affect LR development (Wang et al. 2011). OsCRL5
and OsWOX11 are all required for the initiation of crown
root development, but have no effect on LR development
(Zhao et al. 2009; Kitomi et al. 2011). ARL1/CRL1 mainly
affects crown root development (Liu et al. 2005). Consis-
tant with this, the loss-of-function mutant of the ARL1/
CRL1 ortholog in maize, rootless concerning crown and
seminal root (rtcs), exhibited defective crown root and em-
bryonic seminal root initiation, but the development of
the primary and lateral roots were not affected (Taramino
et al. 2007). Notably, both the promoter regions of RTCS
and its duplicated homologous gene RTCS-LIKE (RTCL)
contain an auxin responsive element (ARE), suggesting
that they are responsive to auxin just like ARL1/CRL1
(Taramino et al. 2007). It suggests that ARL1/CRL1 and
its orthologs have conserved functions in crown root

initiation and development in monocot cereals. LBD16
and LBD29, the two most closely related homologs of
ARL1/CRL1 in Arabidopsis, are direct targets of ARF7
and ARF19 and positively regulate LR formation
(Okushima et al. 2007). This observation suggests that
the LBD proteins might play different roles in the dicot
Arabidopsis and the monocots rice and maize. Further-
more, recent studies have indicated that rice CRL1 could
positively regulate 277 genes, including key genes in meri-
stem patterning, cell proliferation, hormone homeostasis,
and LR formation (Coudert et al. 2011, 2015), suggesting
that the crown root and lateral root may share some
regulatory pathway.
In rice, the Auxin–OsIAA11/OsIAA13 module func-

tions as an important negative regulator of LR forma-
tion. A similar module also exists in Arabidopsis. A
dominant negative mutant of SLR/IAA14, slr1, showed
no lateral root initiation (Fukaki et al. 2005, 2010).
IAA14 interacts with ARF7 and ARF19 and negatively
regulates LR formation (Fukaki et al. 2005; Vernoux et
al. 2011), indicating that auxin stimulates lateral root
initiation through the SLR/IAA14–ARF7/ARF19 sig-
nalling module. Consistently, a second auxin-signalling
module involving IAA12 and ARF5 was also shown to
control lateral root initiation together with SLR–ARF7/
ARF19 (De Smet et al. 2007). These data suggest a con-
served function of Auxin–IAA–ARF in promoting LR
formation in Arabidopsis and rice.

Genes Controlling Root Hair Development
Root hairs are long tubular outgrowths that form on the
surface of specialized epidermal cells. They are required
for the uptake of nutrients and water, particularly in up-
land conditions. Root hair development can be divided
into three phases: cell specification, initiation, and elong-
ation (Cavell and Grierson 2000). The outgrowth of root
hairs is strictly regulated by genetic and environmental
factors. The first root-hairless mutant reported in rice
was rh2 (Suzuki et al. 2003). An exogenous application
of NAA could induce very short root hairs in rh2, sug-
gesting that the absence of root hairs in this mutant may
be due to a shortage of endogenous auxin; however,
the gene has not yet been identified. OsWOX3A was
reported to control root hair formation through the
regulation of auxin transport genes (Yoo et al. 2013),
further suggesting that auxin is required for root hair
elongation. Root hairs are initiated normally in the
Oscellulose synthase-like d1 (Oscsld1) mutant; however,
this gene, which is expressed only in root hair cells, is re-
quired for their elongation (Kim et al. 2007; You et al.
2011). OsRHL1, a bHLH transcription factor expressed
specifically in root hair cells, also regulates root hair
elongation in rice; the loss-of-function mutants Osroot
hairless 1–1 (Osrhl1–1) and Osrhl1–2 produced very short

Meng et al. Rice            (2019) 12:1 Page 6 of 10



root hairs without affecting root length or the number of
LRs and adventitious roots, suggesting that OsRHL1 func-
tions specifically in root hair elongation (Ding et al. 2009).
Furthermore, OsFORMIN HOMOLOGY 1 (OsFH1) was
also found to regulate rice root hair elongation; the loss-
of-function mutant osfh1 exhibited root hair defects when
grown submerged in solution, but produced normal root
hairs in contact with the air. This root hair phenotype
could not be rescued by an external supply of hormones
or carbohydrates (Huang et al. 2013a). It is well known
that root hair growth requires extensive cell wall modifica-
tion, and recent research revealed that OsEXPA17, encod-
ing an expansin involved in cell wall remodelling, plays
a crucial role in root hair elongation. OsEXPA17 is ex-
clusively expressed in root hair cells, and its null mutant
forms short root hairs (Yu et al. 2011). Another rice gene,
OsSEC14-NODULIN DOMAIN-CONTAINING PROTEIN
1 (OsSNDP1), encoding a phosphatidylinositol transfer
protein (PITP), promotes root hair elongation via phos-
pholipid signalling and metabolism, suggesting that the
mediation of these processes by PITP is required for
root hair elongation in rice (Huang et al. 2013b). Add-
itionally, transgenic rice overexpressing STRESS/ABA-
ACTIVATED PROTEIN KINASE 10 (SAPK10) produced
longer root hairs, while plants overexpressing OsABI-
LIKE 2 (OsABIL2) had attenuated ABA signalling and
shorter root hairs (Wang et al. 2017), suggesting that
ABA is also responsible for root hair elongation.
Up to now, almost all of the genes reported to be in-

volved in root hair development regulate their elongation;
thus, the genes regulating root hair cell specification and
initiation in rice are yet to be identified.

Conclusion and Discussion
Faster and more extensive root growth is important for
plant survival in complex soil conditions (de Dorlodot et
al. 2007), as larger root systems typically enable plants to
extract more water and nutrients from the soil (King et
al. 2003). Root growth angle is also an important trait
that affects rice RSA and the associated nutrient and
water uptake. DEEPER ROOTING 1 (DRO1) is believed
to regulate RSA by regulating the growth angle of the
crown roots to adapt to drought conditions; higher
levels of DRO1 expression result in deeper rooting that
may maintain higher yields under drought conditions
(Uga et al. 2013). LARGE ROOT ANGLE 1 (LRA1), en-
coding OsPIN2, was also recently identified to regulate
root growth angle in rice; the lra1 mutant displays a
shallow root system, which may benefit nutrient uptake
(Wang et al. 2018). A more thorough understanding of
the key genes involved in RSA and their regulation
should enable breeders to breed cultivars with en-
hanced root systems using marker-assisted selection in
the future.

Significant progress has been made in our understand-
ing of the genetic control of root development in rice,
particularly through the use of mutants with specific de-
fects in root development and through the identification
of QTLs using genetic linkage analyses. The identifica-
tion of genes that regulate root traits will pave the way
for more detailed genetic and molecular analyses of root
system development in rice and other cereals. Though
many genes that function in root development have been
identified (Fig. 1; Additional file 1: Table S1), our know-
ledge about the molecular mechanisms of root elongation,
crown root development, LR development, and root hair
formation is still fragmented. The majority of studies have
focussed mainly on identifying individual genes using mu-
tants or QTL analyses, which limits our systemic under-
standing of the mechanisms of root development. With
the rapid development of molecular biological approaches,
the combination of functional genomics, transcriptomics,
proteomics, and phenomics will rapidly expand our under-
standing of the molecular mechanisms controlling RSA.
Though many genes with key roles in RSA have been

identified, little is known about the genetic improvement
of the root system using these genes; can they be used in
breeding? Cloning genes from QTL analyses is one feas-
ible way to identify putative candidates for use in molecu-
lar breeding; however, it is difficult to identify QTLs with
minor effects. DRO1 and PSTOL1 were both cloned from
QTL analyses, and have been successfully used in breed-
ing to improve root systems for drought tolerance and im-
prove low-Pi tolerance for growth in less fertile soils
(Gamuyao et al. 2012; Uga et al. 2013). Genome-wide as-
sociation studies (GWAS) have been demonstrated to be a
feasible and practical method to explore the alleles of
existing varieties or genetic resources, which can then be
applied in breeding. Recent studies using these approaches
have identified several major QTLs containing promising
candidate genes for root formation and development
(Courtois et al. 2013; Biscarini et al. 2016; Bettembourg et
al. 2017). However, both QTL analysis and GWAS have
two main difficulties in cloning the genes associated with
root development (Mai et al. 2014). First, it is difficult to
do root phenotyping in real soil conditions, and the root
phenotypes obtained from hydroponic and gel/agar sys-
tems do not really reflect their growth in soil. The second
difficulty is the lack of precision in localizing QTLs using
mapping populations or, to a much lesser extent, with
association panels, because the root phenotype is more
prone to vary in different growth conditions compared
with the aboveground traits. Applying new approaches
such as X-ray micro–computed tomography and magnetic
resonance imaging to study the root system architecture
in natural soils and in complex environments would en-
able more reliable measurement of root traits and the
identification of related genes.
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