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Multivariate-based classification of
predicting cooking quality ideotypes in rice
(Oryza sativa L.) indica germplasm
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Abstract

Background: For predicting texture suited for South and South East Asia, most of the breeding programs tend to
focus on developing rice varieties with intermediate to high amylose content in indica subspecies. However, varieties
within the high amylose content class may still be distinguishable by consumers, who are able to distinguish texture
that cannot be differentiated by proxy cooking quality indicators.

Results: This study explored a suite of assays to capture viscosity, rheometric, and mechanical texture parameters for
characterising cooked rice texture in a set of 211 rice accessions from a diversity panel and employed multivariate
approaches to classify rice varieties into distinct cooking quality classes. Results suggest that when the amylose content
range is narrowed to the intermediate to high classes, parameters determined by rheometry and RVA become
diagnostic. Modeled parameters distinguishing cooking quality ideotypes within the same range of amylose
classes differ in textural parameters scored by a descriptive sensory panel.

Conclusions: Our results reinforced the notion that it is important to define cooking quality classes in indica
subtypes based on multidimensional parameters, by going beyond amylose predictions. These predictive cooking models
will be handy in capturing cooking and eating quality properties that address consumer preferences in future breeding
programs. Policy implications of such findings may lead to changes in criteria used in assessing grain quality
in the intermediate to high amylose classes.
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Background
In rice varietal improvement programs, the texture of
cooked rice is primarily indicated by amylose content
(AC) [Juliano 2006; Juliano et al. 2009]. This param-
eter is used to classify rice into five AC classes asso-
ciated with cooked rice texture: waxy (0–2%), very
low (3–9%), low (10–19%), intermediate (20–25%),
and high (> 25%) [Kumar and Khush 1986a; Kumar
and Khush 1986b]. However, samples in the same AC
class could have different sensory profiles [Cham-
pagne et al. 2010], which suggest that within an AC
class, rice varieties are still quite diverse in terms of
cooking and eating quality. Attempts to fine-tune rice
characterisation include introducing gel consistency

(GC) data to differentiate high-AC rice into soft and
hard classes [Cagampang et al. 1973]; and gelatinisa-
tion temperature (GT) to further differentiate samples
within an AC class into different GT classes [e.g.,Yang
et al. 2014; Pang et al. 2016]. Hence, rice variety de-
velopment and improvement programs use these AC,
GT, and GC indicators to develop breeding targets
for specific markets. Other attributes, such as pasting
properties and mechanical textural properties of rice
varieties, also provide further insights into cooked rice
texture. However, many of the findings still point to
associations of texture with AC [e.g., Li et al. 2017;
Hori et al. 2016; Tran et al. 2011; Li et al. 2016];
thereby effectively masking associations among these
attributes with the diversity of rice germplasm within
an AC class. It must be noted that many of the past
studies used narrow ranges of germplasm to perform
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associations within each AC class [e.g.,Yang et al.
2014; Tuaño et al. 2014; Garcia et al. 2011].
One of the best ways to determine the associations of

other cooking quality factors with texture is to make AC
a constant in studies. An approach is to focus analyses
on waxy rice varieties, which have negligible concentra-
tions of amylose. However, the global waxy rice market
is small (only 1% of the rice trade); thus the waxy rice
approach is not widely used [Calpe 2004]. The biggest
market share for rice comes from those who prefer
varieties with intermediate to high AC in South Asia and
South East Asia [Tuaño et al. 2016; Calingacion et al.
2014]. Hence, insights on diversity of textural attributes
would be most valuable from studies that focused on
varieties coming from these two AC classes.
Information about other cooking quality attributes

within an AC class may be obtained by further charac-
terising the behaviour of starch during the cooking and
the cooling process. Rapid Visco-Analysis (RVA) is rou-
tinely used to determine the pasting behaviour of starch-
water suspensions. The pasting curve provides metrics
that indicate disintegration and retrogradation of starch,
and is based on rheological principles [Zaidul et al.
2007; Fitzgerald et al. 2003; Doutch et al. 2012]. These
metrics include peak viscosity (PV, the maximum viscos-
ity registered during the heating–holding stages), trough
viscosity (TV, the minimum viscosity after PV), final
viscosity (FV, the viscosity measurement at the end of
the cooling stage), breakdown (BD, the difference be-
tween PV and TV), lift-off (LO, the difference between
TV and FV), and setback (SB, the difference between FV
and PV). The pasting curve also shows the pasting
temperature (PTemp, temperature at the point at which
the viscosity increase is greater than the set point for
viscosity change rate) and the peak time (PT, the time it
took to reach PV) [Fitzgerald et al. 2003; Bao 2008]. On
the other hand, reports of viscoelastic properties of
starch pastes via rheometry typically mention the values
for maximum storage modulus (G’max) and feature the
curves for G’, loss modulus (G”), and tan (δ) [Hsu et al.
2000; Iturriaga et al. 2006; Tsai and Lii 2000]. Extracting
more information from the viscoelastic curves could
provide information about the diversity of rice varieties
within the same AC class.
Texture parameters could be classified into three

types: geometrical properties, mechanical properties, and
properties related to moisture and fat content [Brandt et
al. 1963]. Texture profiling using the Texture Analyser
focuses on mechanical attributes. For cooked rice, four
mechanical attributes measured by the Texture Analyser
are applicable: hardness, adhesiveness, cohesiveness, and
springiness [Champagne et al. 1998]. These mechanical
attributes could provide more dimensions in rice charac-
terisation within the same AC class.

Classification of diverse germplasm within intermediate
and high AC classes based on multidimensional data such
as those generated by RVA, rheometry, and texture ana-
lysis will shed interesting insights about cooking and eat-
ing quality. Such insights could then be obtained through
dimension reduction and correlation studies applied to
multidimensional cooking quality data. Predicted cooking
quality classes can also be used to determine grain quality
attributes that affect the market prices of rice varieties
[e.g., Cuevas et al. 2016; Unnevehr et al. 1985].
In this study, multinomial logistic regression and ran-

dom forests are the data mining techniques that were
employed. The multinomial logistic regression is an
extension of the binary logistic regression, a technique
used to calculate the probability of membership in one
of more than two nominal or unordered categories (out-
come variables) based on maximum likelihood estima-
tion [Dixit et al. 2015, reviewed in Madhu et al. 2014].
Random forests, on the other hand, is a prediction tool
composed of a combination of decision trees that can be
used for classification and to measure the importance of
variables [Breiman 2001]. The importance of a variable
is estimated based on increases in prediction error when
the data for that variable is permuted while the data for
other variables are kept unchanged [Liaw and Wiener
2002]. In other words, an important variable that has a
considerable effect on the accuracy of classification can
be identified through a random forest model [Ziegler
and König 2014].
To the best of our knowledge, these data mining tech-

niques have not been applied to classify rice accessions
based on cooking and organoleptic attributes. The obj-
ectives of this study, therefore, were to (1) characterise
the textural and cooking properties of a collection of rice
varieties belonging to the intermediate- and to the
high-AC classes; and (2) apply modeling techniques to
predict distinct cooking quality ideotypes based on
visco-elastic and textural attributes.

Methods
Rice varieties
A set (n = 211) of indica rice accessions was selected
based on genetic diversity and their geographic distribu-
tion, listed as Additional file 1: Table S4. These varieties
were planted and grown during the dry season of 2014
under field conditions at IRRI by following the standard
agronomic practices. The paddy grains were harvested at
maturity and the samples were then stored to equilibrate
moisture content to 14%. The samples were then
dehulled (Rice sheller THU-35A, Satake Corporation,
Hiroshima, Japan) and milled (Grainman 60–230-60-
2AT, Grain Machinery Mfg. Corp., Miami, USA). A test
portion (100 unbroken grains) from each sample was set
aside for texture profile analyses (TPA) and the rest of
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the sample was ground to fine powder (Cyclone Sample
Mill 3010–030, Udy Corporation, Fort Collins, USA).
The homogenized rice flour was used for various bio-
chemical analyses.

Amylose content measurement
Amylose content (AC) was determined based on the col-
orimetric reaction of the amylose-iodine complex devel-
oped using the method of ISO 6647 [International
Organization for Standardization 2007a, 2007b]. In brief,
100 mg flour was suspended in ethanol (1 mL) and so-
dium hydroxide (9 mL, 1 N). The suspension was then
heated (95 °C, 10 min) to gelatinise the starch. Then, the
sample was cooled to room temperature and the volume
of the suspension was made up to 100 mL using deionised
water. The starch in the gelatinised sample was injected
into the glass transition lines of a San ++ Segmented Flow
Analyser (SFA) system (Skalar Analytical B.V., AA Breda,
The Netherlands); it was allowed to react with an aqueous
solution containing 10% CH3COOH (1 N) and 30% KI-I2
(2%:0.2%) to form amylose-iodine complex. Absorbance of
the sample’s amylose-iodine complex was measured at a
wavelength of 620 nm and AC was quantified from a
standard curve using varieties of known ACs (IR65, IR24,
IR64, and IR8). The ACs of the varieties used in the
standard curve were determined using the reference
method of ISO 6647 [International Organization for
Standardization 2007a, 2007b]. Samples were then classi-
fied into AC classes using the AC ranges previously re-
ported [Graham 2002].

Gelatinisation temperature (GT) measurement
The GT of the rice samples were characterised through
differential scanning calorimetry (DSC) as previously de-
scribed [Cuevas et al. 2010]. In brief, milled rice flour
(4 mg) was immersed in water (8 mg) and the
suspension was hermetically sealed in aluminum pans.
The sealed pans were then heated (25–120 °C), with
temperature being increased at a rate of 10 °C min− 1,
using a DSC model Q100 (TA Instruments, DE, USA).
Data on thermal transitions were collected and analysed
using the Universal Analysis 2000 software. The peak of
the endotherm was reported as the GT. Samples were
classified as low-GT (below 67 °C), as intermediate-GT
(68–73 °C), and as high-GT (GT ≥ 74 °C) [Cuevas et al.
2010; Musyoki et al. 2015].

Rapid Visco-analyses
Rice flour (3 g) was suspended in reverse osmosis-purified
(RO) water (25 g) in a canister and viscosity changes were
then measured using a Rapid Visco Analyzer (RVA, Model
4-D, Newport Scientific, Warriewood, Australia), follow-
ing the heat (50–95 °C) – hold (95 °C) – cool (95–50 °C)
time/temperature profile described in the AACC Method

61–02 [American Association of Cereal Chemists Inc
2000]. The time/temperature profile was controlled and
the data was collected and processed using the Thermo-
Cline for Windows (TCW) version 2.6.

Rheometry
For each sample, rice flour was suspended in reverse-os-
mosis water (1:2 (w/v)) and then placed at the centre of
a Peltier plate of the Advanced Rheometer 2000 (TA In-
struments, New Castle, DE). The rheometer was fitted
with a parallel plate geometry (Ø = 40 mm). To minimise
evaporation during the test, the sample was covered with
a solvent trap sealed with water. During the test, the
sample was subjected to heating ramp (35–95 °C) at 4 °
C min− 1 ramp rate then to a cooling ramp (95–35 °C) at
the same ramp rate. The frequency of oscillation was set
at 1 cycle per second (1 Hz). Measurements were per-
formed in triplicate. The TA Advantage Software 2003
(version 4.0.0) was used to record the data (Table 1).
Additional parameters were calculated using Microsoft
Excel 2013 (Table 1, Additional file 2: Figure S1). The
temperature at the gelation point (i.e., the crossover
point where tan (δ) = 1), the loss modulus (G”) at G’max,
the tan (δ) at G’max (the ratio of G” to G’ at G’max), and
the temperature at G’max were determined based on the
G’ and the G” curves. Slopes 1 and 3 (S1 and S3) were
measured from the gel point (where tan (δ) = 1) to G’max

and G”max. Slope 2 (S2) was measured at G’max to the
lowest point of the decreasing G’ (G’trough) while Slope 4
(S4) was measured from G”max to the point before the
G” leveled off.

Table 1 Description of the viscoelastic properties measured via
rheometry [Hsu et al. 2000; Ahmed et al. 2008; Mandala 2012]

Parameter Description

Storage Modulus
max (G’max)

Maximum energy stored was reached.

Loss modulus (G”)
at G’max

Energy loss at G’max.

Tan (δ) at G’max Variable that describes behavior of the sample
(solid- or liquid- like).

Temperature at
gelation point (tan
(δ) =1)

Temperature measured at point where G’ and G”
crossed over and the point at which tan (δ) =1.

Peak temperature
G’

Temperature measured when the G’max is reached.

aSlope 1 (S1) Rate of change of G’ from the gelation point to G’max.
aSlope 2 (S2) Rate of change of G’ from G’max to the lowest point

of the decreasing G’ (P1)
aSlope 3 (S3) Rate of change of G” from the gelation point to G”max.
aSlope 4 (S4) Rate of change of G” from G”max to the point before

the G” levels off.
a G’trough Lowest point after G’max.
afeatures of the viscoelastic curves that are not routinely measured, according
to literature
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Texture profile analyses
For each sample, 25 unbroken milled rice grains were
submerged in 1 mL water for 15 min in a test tube,
which was then covered to minimise water evaporation.
The test tube was heated in a boiling water bath
(20 min) and then placed in a water bath (50 °C) until
texture profile analysis. Three cooking replications were
conducted. Three cooked unbroken rice grains were
subjected to a two-cycle compression test using a
TA.XT-Plus Texture Analyser equipped with a cylin-
drical probe (Ø = 35 mm, Stable Micro Systems Ltd.,
Surry, UK). The texture profile resulting from this
two-compression test is composed of two sets of one
positive and one negative curves, which can be divided
into regions that represent downstrokes (increasing
values) and upstrokes (decreasing values) (Additional
file 2: Figure S2). Hardness (HRD, the peak of the first
positive curve), adhesiveness (ADH, the area under the
negative curve, representing the work required to pull
the plunger from the sample on the base plate), cohe-
siveness (COH, the ratio of the area of the second posi-
tive curve to that of the first positive curve), and
springiness (SPR, the ratio of the time elapsed from the
upstroke to the peak in the second curve (T2) to the
time elapsed from starting point to the peak of the first
curve (T1), representing sample height recovery after
the initial compression) [Lyon et al. 2000]. These pa-
rameters were measured at 90% strain and test speed at
0.5 mm s− 1. For each cooking replicate, three compres-
sion replicates were conducted.

Protein content measurement
Crude protein content (PC) was measured using a
modified protocol based on the automated colorimet-
ric method (AACC Method 46–09) [AACC 2000]. A
test portion of flour (50 mg) was digested in sulphuric
acid (2 mL) with 1 g anhydrous potassium sulphate:se-
lenium mixture (50:1, w/w) for 1 h at 370 °C. The
sample was then cooled to room temperature and
made up to volume (20 mL) with deionised water. It
was kept overnight to allow for sedimentation. The
liberated ammonium in the digest was then allowed to
react with a solution containing sodium salicylate
(0.94 M) and sodium nitroprusside (0.00026 M), and
aqueous sodium hypochlorite (0.525%, also contained
30% Brij-35) while going through the glass transition
lines in a San ++ Segmented Flow Analyser (SFA) sys-
tem at 16 mL min− 1. Absorbance values of the
ammonia-salicylate complex were determined at λ =
660 nm. The % Kjeldahl N values of the samples were
determined based on the linear relationship between
absorbance and analyte concentration, following the
Beer-Lambert Law. This linear relationship was based
on a standard curve developed using ammonium

sulfate solutions with different concentrations. The
crude PC was calculated by multiplying the Kjeldahl N
value by 5.95 [Villareal et al. 1991].

Statistics
Statistical analyses were carried out in R (version 3.3.2,
released 2016). Ward’s cluster analysis was used to group
the samples into three clusters based on 25 variables
(AC, PC, RVA, advanced rheometry, and texture param-
eters). The raw dataset was used in developing a multi-
nomial logistic regression (MLR) model to identify
different clusters using Eq. 1:

f Xi; kð Þ ¼ βk � Xi; ð1Þ

where f(Xi,k) is the score associated with the sample i
assigned to cluster k (a non-binary categorical response
variable), βk is the vector of regression coefficients asso-
ciated with cluster k, and Xi is the vector of explanatory
variables describing sample i.
Tests of random forests (RF) were conducted with

500 trees and three variables randomly selected at each
split. These random forests generated standardised
scores that indicated the importance of each of the nine
retained variables (determined by MLR) in classifying
samples into the three clusters and also identified the
most important variables per cluster. To rank the vari-
ables according to importance, the random forest algo-
rithm determined the magnitude of increase in the
prediction error (i.e., decrease in prediction accuracy)
when the out-of-bag data were permuted (or excluded)
for one variable while data for all other variables were
held constant [Liaw and Wiener 2002; Louppe et al.
2013]. Hence, variables that had higher changes in mag-
nitude of increases in prediction error were deemed
more important than those variables that tend to have
lower magnitudes.

Sensory evaluation
Five samples from each cluster were selected for sensory
evaluation using the texture profiling method [Lyon et
al. 2000]. Milled grains from each sample were cooked
using a 1:1 (v/v) ratio with water in rice cookers (0.6 L,
Micromatic Model MRC-350). After the rice was cooked
to completion, the rice was mixed, ensuring that the
grains touching the sides and the bottom were undis-
turbed. Sub-samples were distributed into glass custard
cups (pre-labelled with three-digit codes), sealed with a
plastic lid, and then monadically presented for sensory
evaluation to a previously trained set of panellists. Along
with the sample, a tablespoon and a cup of drinking
water were provided. To ensure that the samples were
kept warm during the evaluation, the samples were kept
in the rice cooker (at the “Warm” setting) and only
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**
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placed in sample cups once the panellists requested for
the samples. A rice breeding line, IR06N155 (harvested
in the dry season of 2013 at IRRI’s Long-Term Continu-
ous Cropping Experiment), was used as a standard. It
was served to the panellists six times, randomly distrib-
uted in different rice tasting sessions.
The sensory panelists who participated in sensory

evaluation were selected based on their availability and
previous training in sensory descriptive profiling. The
training phase included a battery of difference tests,
sample and method familiarisation, and adjustment of
the lexicon based on the panelists’ contexts [Champagne
et al. 2010]. The rice samples used in the training phase
were commercially available milled rice sold as Sinando-
meng, Jasmine, and Long-grain rice.
The attributes tested during the rice tasting sessions

represented the texture perceived at various stages of
eating rice: from when the rice grains are first placed in
the mouth up to after swallowing the rice. Panellists
evaluate the intensity of each attribute on a 150-mm
scale that has been adapted from established 15-point

reference scales [Goodwin Jr. et al. 1996]. The R soft-
ware was used for statistical analyses. Means and stand-
ard deviations were calculated per cluster.

Results and discussion
This study characterized cooking quality properties of
211 diverse rice accessions based on 25 cooking quality
variables including those routinely tested in grain
quality evaluation programs (AC, GT, PC, and RVA
parameters) along with specialized traits to capture
viscoelastic properties measured by rheometry (Table 1)
and textural properties measured by TPA. Previous
publications indicate that many of these variables are
correlated [e.g., Chung et al. 2011, Singh et al. 2006,
Bao et al. 2006, Allahgholipour et al. 2006, Vandeputte
et al. 2003, Tan and Corke 2002, Xie et al. 2011, Martin
and Fitzgerald 2002] and may thus be treated as redun-
dant variables. In this study, it was determined that 10
of the 25 variables were highly correlated (r > 0.75 or r
< − 0.75, Table 2). Pasting temperature and temperature
at the gel point were highly correlated with GT.

Fig. 1 Ward’s cluster analysis indicates that the samples (n = 211) grouped into three clusters based on 19 grain quality attributes: n1 = 114 (red),
n2 = 70 (blue), n3 = 27 (green)
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Although peak viscosity (PV) was highly correlated with
trough (TV) and final (FV) viscosities; FV was also
highly correlated with lift-off (LO) and TV. In addition,
G’max was positively correlated with G” at G’max and
negatively correlated with temperature at G’max. Thus,
six of these correlated attributes (PT, temperature at
gel point, TV, FV, G” Temp at G’max) were removed as
redundant from the subsequent analyses and 19 vari-
ables were retained, including GT, LO, G’max, and PV.
By employing Ward’s cluster analysis to 19 variables

(Table 2), three distinct clusters were identified (Fig. 1).
Among them, cluster 1 was the biggest, with 114 sam-
ples, followed by cluster 2 with 70 samples, and by clus-
ter 3 with 27 samples.
Clusters 1 and 2 have high AC; on the other hand,

samples in cluster 3 could clearly be classified as inter-
mediate AC (Table 3, Fig. 2a). Due to the similarities in
ranges of AC between clusters 1 and 2, it is important
to distinguish these two clusters based on visco-elastic
parameters, through advance rheometry, and on tex-
tural attributes. In the past, rice samples with similar
ACs have been reported to have distinguishable textural
properties [e.g., Champagne et al. 2010; Champagne et
al. 1999]; hence, it is important to explore other indica-
tors of cooking behaviors’ and organoleptic properties

in order to fine tune how rice varieties within the high
AC classes are classified.
Gelatinisation temperature is (GT) often regarded as

one of the most important factors affecting cooked rice
quality and it is often viewed in combination with AC
because an increase in AC reportedly leads to elevated
GT [Juliano et al. 2009; Yang et al. 2014]. In this study,
cluster 2 (high AC) and cluster 3 (intermediate AC)
were clearly classified as high GT; on the other hand,
cluster 1 (high AC) has been classified as low GT (Fig.
2a, Table 3). This indicates that AC alone cannot con-
tribute to increase in GT (Table 2). GT in addition,
might potentially be influenced by medium chain
length contribution of amylopectin (Miura et al. 2018).
In this context, starch structure would play an import-
ant role to fine-tune the cooking quality ideotypes of
the samples.
Protein content (PC) has been reported to affect

cooked rice stickiness [Champagne et al. 2009] and
surface hardness [Okadome 2005]. In this study, how-
ever, the averages of PC for the three clusters ranged
from 8.30 to 8.66% (Table 3), suggesting that PC is
probably not a discriminatory factor for clustering
these samples. While clusters 2 and 3 had similar
ranges of PC, the cluster 1 appeared to have the widest
range in PC (Fig. 2a). These results agree with a previ-
ously published report that PC was not an attribute
that can differentiate cooking quality classes within
rice collections [Bett-Garber et al. 2001].
The TPA provided measurements for HRD, ADH,

COH, and SPR. The three clusters had similar values
for HRD (Table 3), with ranges also observed in waxy
rice [Boualaphanh et al. 2011]. This indicates further
that AC did not solely affect HRD for the samples in
this study, as these two parameters are weakly corre-
lated (Table 2). However, due to the similarities in
values, HRD potentially could not define the three
quality clusters. Diversity lines differ for ADH ranged
from 0.02 to 0.04 kg·sec, COH ranged from 0.42 to
0.44, and SPR from 0.10 to 0.11 (Table 3). The box
plots indicated that the ranges of the textural attri-
butes represented in clusters 1 and 2 overlapped such
that it was difficult to separate the two clusters from
each other (Fig. 2b).
Pasting parameters are additional indicators of or-

ganoleptic quality, with parameters extensively studied
particularly with their relationships with AC, PC, and
mechanical texture attributes [reviewed in Champagne
et al. 1999, Okadome et al. 2005, Yoenyongbuddhagal
and Noomhorm 2002]. Results indicated that the clus-
ters 1 and 2 exhibited similar averages for the different
pasting parameters (Table 3); however, the averages
for BD and SB clearly distinguish cluster 3 from the
other two clusters (Table 3). Cluster 3 had the lowest

Table 3 Means of 19 grain quality indicators of rice samples, by
cluster. Standard deviations are indicated in parentheses

Variable Cluster 1
(n = 114)

Cluster 2
(n = 70)

Cluster 3
(n = 27)

GT (°C) 74.81 (3.98) 77.10 (1.22) 77.94 (1.38)

AC (%) 25.07 (1.44) 25.51 (1.49) 21.22 (1.24)

PV (P) 2.23 (0.52) 2.28 (0.43) 2.49 (0.18)

BD (P) 0.67 (0.20) 0.78 (0.14) 1.10 (0.14)

SB (P) 0.69 (0.21) 0.61 (0.18) 0.15 (0.18)

LO (P) 1.36 (0.25) 1.39 (0.19) 1.24 (0.09)

PT (min) 5.96 (0.30) 5.84 (0.18) 5.89 (0.13)

HRD (kg) 1.96 (0.50) 1.94 (0.50) 1.73 (0.47)

ADH (kg·sec)a 0.02 (0.01) 0.02 (0.01) 0.04 (0.02)

COH 0.44 (0.06) 0.42 (0.05) 0.43 (0.04)

SPR 0.11 (0.02) 0.11 (0.01) 0.10 (0.01)

G’max (kPa) 40.64 (9.62) 28.34 (7.20) 29.83 (7.26)

tan (δ) at G’max 0.11 (0.02) 0.12 (0.04) 0.11 (0.02)

G’trough (kPa) 15.53 (4.31) 11.92 (2.33) 11.66 (1.83)

S1 (kPa/min) 7.45 (2.66) 4.66 (1.88) 5.93 (2.49)

S2 (kPa/min)a 1.66 (0.58) 1.27 (0.33) 1.29 (0.22)

S3 (kPa/min) 1.77 (0.70) 1.19 (0.58) 1.38 (0.63)

S4 (kPa/min)a 1.53 (0.81) 1.09 (0.63) 1.24 (0.71)

PC (%) 8.66 (1.26) 8.34 (1.02) 8.30 (1.00)
aAbsolute values are indicated here because for these parameters, the
negative (−) sign only indicates direction (i.e., up or down) rather than
magnitude less than zero
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setback among the three clusters (Table 3). This agrees
with previous reports that indicate that setback and
AC are correlated [e.g., Allahgholipour et al. 2006; Tan
and Corke 2002; Chen et al. 2008]. Cluster 3 also has
the highest BD (Table 3), indicating that the samples

in this cluster are most resilient to continuous agita-
tion stress.
Although most of the traditional grain quality parame-

ters (AC, PC, GT and viscosity profiles of RVA) could
not distinguish high-AC accessions represented within

Fig. 3 Boxplots of the three clusters of rice samples for rheometry parameters: G’max, tan (δ) at G’max, G’trough, Slope 1 (G’), Slope 2 (G’), Slope 3
(G”), Slope 4 (G”)

Fig. 2 Boxplots of the three clusters of rice samples for (a) GT, AC, and PC; (b) TPA parameters: HRD, ADH, COH, SPR; (c) RVA parameters PV, BD,
LO, SB, and Peak time; and
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clusters 1 and 2, rheometry parameters have shown a
nice range of differentiation between cluster 1 and 2
(Table 3 and Fig. 3). Cluster 1 represented lines had the
highest averages for G’max and G’trough while the other
two clusters had similar values. Likewise, cluster 1 could
clearly be distinguished from cluster 2 and cluster 3
based on S1, S2, S3, and S4 derived from the rheometer
curves (Table 3 and Fig. 3).
In breeding programs, rice cooking quality classifica-

tion is typically based on AC, GC, and GT considered
individually [e.g., Juliano et al. 2009; Bett-Garber et al.
2001]. Although influence of AC on cooking quality is
helpful when considering diverse rice collections con-
taining both japonica and indica rice, the classical
means of quality classification will probably not work
when dealing with rice varieties within the same AC
class in an indica germplasm collection. This study,
therefore, used MLR (Eq. 1) in categorising the samples
within the high-AC groups by including multiple vari-
ables in a classification model for cooking quality ideo-
types. The “Forward Selection (Akaike Information
Criterion, AIC)” allows stepwise selection to exclude
the multi-collinear variables from the model. Through
this step, 10 out of 19 variables were retained in the
model, most of which were significant (p < 0.05) in the
likelihood ratio test (Table 4). The 10 attributes which
contributed significantly to the model included AC and
GT from routine grain quality parameters; BD from
RVA; G’max, tan (δ), G’trough, S1, S2, and S3 from rheo-
metry; and COH from TPA. The model has high classi-
fication accuracy (93.84%, Table 5) with sufficient
explanatory power, as indicated by the change in –
2Loglikelihood in the final model (χ2 = 339.66, df = 18,
p < 0.01, Table 5). Also, the pseudo-R2 values indicate
high levels of fit to differentiate clusters represented by
cooking quality groups (Table 5).

The magnitudes of the coefficients (i.e., multinomial
log-odds) differed across clusters (Table 5); however,
these do not indicate the importance of these variables
in explaining the model. The relative importance of
these variables was determined via random forest. Re-
sults show that AC was the most important variable in
defining Cluster 3 (Fig. 4); this is expected because this
cluster has the lowest AC values (Fig. 2a and Table 3).
On the other hand, the two most important variables
differentiating clusters 1 and 2 were rheometry parame-
ters, S1 and G’max. Amylose content ranked third in im-
portance for both clusters, perhaps because AC can
differentiate these two clusters from Cluster 3. The
MLR model (Table 5) indicates that for every unit in-
crease in BD, tan (δ) at G’max, and GT, the multinomial
log-odds distinguished accessions represented in cluster
1 from cluster 2. Meanwhile, for every unit increase in
G’trough, S1, S3, COH, and G’max, the multinomial
log-odds that the sample belonged to cluster 2 rather
than to cluster 1 decreased.
The capacity to differentiate between rice varieties

within the same AC class through instrumental means
becomes truly important if the differences can be de-
tected by rice consumers. Hence, five samples from each
cluster were subjected to descriptive profiling for texture

Table 5 Summary of multinomial logistic regression for variables
characterising the different rice quality clusters. Cluster 1 is not
shown in Table 5 because it is the reference cluster. Table 5
indicates the multinomial log-odds that samples represented in
Cluster 2 or in Cluster 3, were compared to reference cluster 1
to calculate every unit increase or decrease in the different grain
quality attributes included in the multinomial logistic regression
model

Grain quality
attribute

Estimate

Cluster 2 Cluster 3

Intercept −25.51 (15.27) 3.61 (0.08)***

AC (%) 0.08 (0.30) −9.17 (2.94)***

G’trough −0.33 (0.19)* −1.48 (0.93)

BD 0.06 (0.03)** 0.72 (3.55)

S1 −0.88 (0.22)*** −1.37 (3.20)

tan (δ) at G’max 0.55 (0.14)*** 0.21 (11.71)

S3 −2.84 (0.84)*** −0.12 (0.66)

GT 0.54 (0.18)*** 2.03 (6.97)

COH −0.24 (0.08)*** 0.01 (11.97)

G’max −0.15 (0.06)*** 0.22 (8.68)

N 70 27

Note: Total N = 211; AIC = 106.20; Overall classification accuracy: 93.84%
Reference category for the regression model is cluster 1 (n = 114)
Standard errors of the estimates are indicated in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01.
Goodness-of-fit statistics: Residual Deviance = 66.20; Degrees of freedom = 18
–2Log-likelihood: The intercept-only model: 405.87; The final model: 66.20;
χ2 = 339.66; p < 0.01
Pseudo-R2: McFadden = 0.84; Cragg & Uhler = 0.94; Cox & Snell = 0.80

Table 4 Likelihood ratio (LR) test

Variable LR Chisq Pr (> Chisq)

AC 58.95 < 0.01***

G’trough 9.25 0.01**

BD 7.80 0.02*

S1 20.87 < 0.01***

tan (δ) at G’max 24.06 < 0.01***

S3 15.35 < 0.01***

GT 13.30 < 0.01**

COH 13.91 < 0.01***

G’max 9.95 0.01**

S2 4.14 0.13

* p < 0.05, ** p < 0.01
Degrees of Freedom = 2
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by a trained sensory panel (Table 6, Additional file 3:
Table S1). The sensory profiles generated for textural at-
tributes were compared (Fig. 5, Table 7). It was notable
that clusters 1 and 2 had similar ranges of AC but had
distinguishable sensory attributes. There was a remark-
able difference between clusters 1 and 2 in terms of
stickiness (both to the lips and between grains), cohe-
siveness, cohesiveness of mass, toothpack, and uniform-
ity of bite. Furthermore, accessions representing cluster
1 were perceived to be slightly harder and springier than
accessions from cluster 2, although both have high AC

ranges. These results suggest that lines represented in
clusters 1 and 2, distinguished initially based on rheome-
try and mechanical texture properties, could be differen-
tiated by humans (Table 7). This further suggests that
there may be relationships among force-related textural
attributes perceived by people, rheological properties,
and those attributes measured by texture profile ana-
lyses; and these attributes may distinguish lines with
high-AC content. The differences in sensory profiles be-
tween clusters 1 and 3 appear to be related to moisture
absorption, residual loose particles, and initial starchy
coating (Fig. 5). Results also indicate that, despite the
difference in AC class, accessions representing cluster 3
were similar to samples in cluster 1 in terms of cohesive-
ness, cohesiveness of mass, roughness, slickness, sticki-
ness between grains, and toothpack. Attributes such as
cohesiveness, cohesiveness of mass, toothpack, and uni-
formity of bite have not been explored as deeply as the
force-related textural properties.

Conclusions
To predict cooking quality ideotypes of indica rice with
intermediate-to-high AC, we used 25 variables covering
routine cooking quality predictors, RVA, rheometry,
and instrumental texture profiling. Results showed that
these intermediate- and high-AC samples could be clas-
sified into two distinct clusters using 19 variables. Clus-
ters 1 and 2 both contained samples with high-AC
while cluster 3 had samples with intermediate AC. This
is the first study in which MLR was used to further dif-
ferentiate high-AC samples using rheometry, TPA, and
RVA parameters simultaneously. The differences in
sensory profiles between the two clusters validate the
use of rheometric properties as proxy metrics to distin-
guish cooking and eating quality within high-AC

Fig. 4 Importance of the nine grain quality variables included in the final MLR model in each cluster, as calculated using Random Forests

Table 6 Samples that underwent descriptive sensory profiling
from the three clusters and their values for AC, GT, and PC. IDs
linked to accession names have been described in Additional
file 3: Table S1

Cluster Number Sample AC (%) GT (°C) PC (%)

1 GQ 00403 Plt 0057 24.5 68.44 8.27

GQ 01652 Plt 0222 24.6 77.92 8.03

GQ 01524 Plt 0369 27.4 76.88 6.55

GQ 01633 Plt 0370 27.2 76.44 6.84

GQ 01613 Plt 0493 26.3 77.81 7.74

2 GQ 00261 Plt 0885 26.8 76.60 9.40

GQ 00324 Plt 0993 25.2 77.75 8.63

GQ 00089 Plt 1143 25.5 76.89 8.33

GQ 00401 Plt 1167 23.9 77.17 11.13

GQ 00131 Plt 1414 25.0 78.45 7.38

3 GQ 01527 Plt 0106 22.7 78.24 7.74

GQ 01523 Plt 0218 20.5 77.58 7.91

GQ 01696 Plt 0376 19.4 78.65 8.63

GQ 01659 Plt 0492 19.9 78.43 8.33

GQ 01691 Plt 0543 22.7 79.94 6.49
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ranges. This study calls for a deeper look into variables
extracted from rheometry and descriptive sensory
evaluation, as these could enhance our capacity to clas-
sify rice into quality classes that match consumer pref-
erences. A deeper understanding about these attributes
will be important as breeding strategies become

increasingly reliant on product profiles. The capacity to
measure these attributes in an efficient and quantitative
manner can also help set standards that can be used for
developing policy and trade recommendations to cap-
ture the cooking and eating quality properties of rice in
varietal development programs. These rice quality rec-
ommendations will be handy as rice-growing countries
continue to strive to supply domestic and export needs.

Additional files

Additional file 1: Table S4. Phenotype data of grain quality cooking
and eating quality parameters, rapid viscosity analyzer, advance
rheometry and texture attributes of core collection panel. (XLSX 66 kb)

Additional file 2: Figure S1. Storage (G’) and loss moduli (G”) curves of
GQ00043-PLT1298 (1:2 w/vflour: water ratio) obtained during heating and
cooling steps in a rheometer. The parameters defined in therheometry
profiles are described in Table 1. Figure S2. A typical two-compression
TPA curve obtained from a texture analyzer. Hardness(kg) is peak force of
the first compression (H1). Adhesiveness is the negative force area of the
first bite.Cohesiveness is the ratio of the positive force area during the
second compression portion to that during thefirst compression (A2/A1).
Springiness is defined as the ratio of T2 to T1, where T1 is total distance
travelledby the probe on downstroke and T2 is distance traveled on
downstroke by the probe from point of samplecontact to end of
downstroke (T2/T1). (ZIP 214 kb)

Additional file 3: Table S1. Designations of samples used for sensory
evaluation, selected from the three clusters. Table S2. Data used for
multivariate analyses for the samples selected for sensory evaluation.

Fig. 5 Box plots comparing the three clusters based on 13 texture attributes evaluated by sensory panelists based on a 150-mm scale. The
sensory attributes [13] evaluated were: cohesiveness (COH), cohesiveness of mass (COH_MASS), hardness (HRD), initial starchy coating (ISC),
moisture absorption (MOIST_ABS), residual loose particles (RLP), roughness (ROUGH), slickness (SLICK), springiness (SPR), stickiness between
grains (STK_GRAINS), stickiness to the lips (STK_LIPS), toothpack (TPK), uniformity of bite (UOB)

Table 7 Comparison of intensities of sensory attributes based
on descriptive test conducted through panel evaluation

Sensory attribute Cluster

1 2 3

Initial starchy coating 64.3±11.9 53.4±4.8 72.3±6.4

Slickness 66.8±14.5 55.8±8.3 69.3±13.3

Roughness 45.6±7.1 50.2±12.7 40.8±7.5

Stickiness to the lips 76.7±16.1 58.6±14.2 99.6±3.5

Stickiness between grains 76.6±16.6 55.4±12.2 82.5±4.4

Springiness 59.0±7.7 49.3±7.6 55.2±4.2

Cohesiveness 69.9±8.4 49.4±10.2 68.0±7.3

Hardness 56.1±4.7 51.7±6.3 43.5±8.3

Uniformity of bite 93.3±5.2 65.9±10.0 91.6±9.7

Cohesiveness of mass 90.8±4.1 83.1±12.8 107.8±5.8

Moisture absorption 65.5±13.1 64.7±6.3 70.5±7.6

Residual loose particles 68.9±5.4 75.1±8.9 55.7±11.1

Toothpack 71.5±9.4 51.2±15.1 66.4±7.2
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Table S3. Sensory evaluation scores1 for the fifteen rice accessions from
the three clusters. (DOCX 30 kb)
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