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Abstract

Background: Despite the great contributions of utilizing heterosis to crop productivity worldwide, the molecular
mechanism of heterosis remains largely unexplored. Thus, the present research is focused on the grain number
heterosis of a widely used late-cropping indica super hybrid rice combination in China using a high-throughput
next-generation RNA-seq strategy.

Results: Here, we obtained 872 million clean reads, and at least one read could maps 27,917 transcripts out of
35,679 annotations. Transcript differential expression analysis revealed a total of 5910 differentially expressed genes
(DGHP) between super-hybrid rice Wufengyou T025 (WFYT025) and its parents were identified in the young
panicles. Out of the 5910 DGHP, 63.1% had a genetic action mode of over-dominance, 17.3% had a complete-
dominance action, 15.6% had a partial-dominance action and 4.0% had an additive action. DGHP were significantly
enriched in carotenoid biosynthesis, diterpenoid biosynthesis and plant hormone signal transduction pathways,
with the key genes involved in the three pathways being up-regulated in the hybrid. By comparing the DGHP

enriched in the KEGG pathway with QTLs associated with grain number, several DGHP were located on the same
chromosomal segment with some of these grain number QTLs.

Conclusion: Through young panicle development transcriptome analysis, we conclude that the over-dominant
effect is probably the major contributor to the grain number heterosis of WFYT025. The DGHP sharing the same
location with grain number QTLs could be considered a candidate gene and provide valuable targets for the
cloning and functional analysis of these grain number QTLs.
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Background
Heterosis is a phenomenon in which hybrids exhibit super-
iority over their parental lines in economic traits, such as
enhanced biomass production, development rate, stress tol-
erance and, most important, grain yield. Heterosis has been
extensively used to increase crop productivity throughout
the world. A major increase in rice yield was caused by the
application of heterosis. Because of the key role of heterosis,
the molecular mechanisms should be elucidated. In the

early twentieth century, dominance (Davenport 1908) and
over-dominance (Shull 1908) were used to explain heterosis.
However, with nothing about molecular concepts being
covered, consequently, they cannot interpret the molecular
genetic mechanisms of heterosis (Birchler et al. 2003). With
the development of polymerase chain reaction (PCR), mo-
lecular markers have been widely used to identify the dis-
tance between the hybrid and its parents and to build the
relationship between heterosis and genetic distance. How-
ever, marker PCR can only be used to classify heterotic
groups and determine genetic diversity, but it cannot pre-
dict heterosis because the coefficient of the relationship be-
tween the genetic distance of SSR markers and yield
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heterosis is very small (Xu et al. 2009). Subsequently, mo-
lecular markers and hybrid genetic analysis have been used
to locate QTLs for heterosis. A Pioneer study of the heter-
osis gene qGY2–1 related to yield was reported in haplotype
populations (He et al. 2006). To eliminate the epistasis effect
among QTLs, Bian et al. (2011) used chromosome segment
substitution lines (CSSLs) to study heterosis for yield traits
in indica × japonica hybrid rice subspecies. With the advent
of high-throughput sequencing technology, scientists con-
ducted DNA sequencing of 1495 elite hybrid rice varieties
and their inbred parental lines. Comprehensive analyses of
heterozygous genotypes have revealed that heterosis mainly
resulted from the accumulation of numerous superior al-
leles with positive dominant effects (Huang et al. 2015).
In addition, the association of heterosis with differen-

tially expressed transcripts was also investigated at the
RNA level. Wei et al. (2009) investigated differentially
expressed transcripts from tissues at different growth de-
velopment stages using super rice LYP9 and its parents
and found that the differentially expressed transcripts
were closely related to QTLs in response to heterosis.
Huang et al. (2006) used 9198 unique sequence tags to
study gene differential expression profiles of young pani-
cles using the super rice SY63 combination and suggested
that transcripts controlling DNA repair and replication
were up-regulated and that the genes related to carbohy-
drate, energy and lipid metabolism, translation and pro-
tein degradation were down-regulated.
High-throughput RNA sequencing has been used to

search for heterosis in rice to avoid defects of methods
with low throughput, high cost, low sensitivity, clonal
preference, and high background noise. RNA-seq was first
used to compare the transcriptome profiles of reciprocal
hybrids from Nipponbare and 93-11, along with their par-
ents, at the seedling stage. In total, 2800 genes showed dif-
ferential expression, and these transcripts were involved in
energy metabolism, especially in the Calvin cycle, in which
six key components were up-regulated (He et al. 2010).
Later, Zhai et al. (2013) compared the transcriptome be-
tween super hybrid XY9308 and its parents through
RNA-seq, which indicated that carbohydrate metabolism
and plant hormone signal transduction were enriched in
differentially expressed transcripts.
In this study, we focused on heterosis in the rice

WFYT025, a widely used late-cropping indica super
hybrid rice combination in China. The number of
filled grains, one of the most important yield hetero-
ses in yield contributing factors, showed great
differences between WFYT025 and its female parent.
Thus, we conducted transcriptome analysis using
young panicles from the WFYT025 combination by
high-throughput RNA-seq to detect the correlation of
key transcripts with filled grain number heterosis.
Some key transcripts were mapped in the QTL

interval related to grain number. Revealing the func-
tion of these transcripts may provide useful informa-
tion for understanding the molecular mechanism
underlying heterosis.

Results
Phenotype analysis for WFYT025 and its parents
In this study, we investigated the yield-related traits
of WFYT025 and its parents. It was found that the
panicles of WFYT025 and its male parent CHT025
were larger than those of the female parent WFB,
and their grain number and primary branch number
were also higher than those in WFB (Fig. 1a and b).
However, no significant differences were observed be-
tween WFYT025 and parental line CHT025 for both
grain number and primary branch number (Fig. 1b).
Mid-parent heterosis (MPH) and higher parent heter-
osis (HPH) were estimated for the heterosis of pani-
cles. The MPH for all of the traits except the seed
setting ratio and tiller remained significant (Table 1).
Traits such as primary branch number, secondary
branch number, filled grain number, empty grain
number and 1000-grain weight were significant for
the MPH at p < 0.05, while traits such as spike length,
total grain number and yield per plant were highly
significant at p < 0.01. The MPH showed negative ef-
fects on the seed setting ratio. Apart from the seed
setting ratio and empty grain number, the MPH
values for all of the traits varied from 1.16 to 32.32%.
In addition, HPH for yield per plant remained highly
significant (22.99%) at the p < 0.01 level. Further ana-
lysis indicated that significant difference for yield per
plant was mainly due to the large MPH range for
filled grain numbers (20.01%) and 1000-grain weight
(6.25%). This implied that compared to the
1000-grain weight, the yield heterosis was more likely
to underlay the filled grain number between hybrid
WFYT025 and maternal line WFB.

Identification of transcripts by sequencing
A total of 917 million raw reads were generated using
the high-throughput Illumina HiSeq 2500 platform.
The paired-end sequences with low-quality reads con-
taining adapters were trimmed off. Finally, 87.2 million
clean reads were obtained (Table 2). The correlation for
the gene expression level from three biological repli-
cates of each line was 0.97 < R2 < 0.99. (Additional file 1:
Figure S1). We pooled the short reads and aligned them
to the Nipponbare reference genome (IRGSP v1.0) to
identify the transcripts. Out of 35,679 identified tran-
scripts, 27,917 transcripts were mapped, covering
78.24% of the genome. In addition, the transcriptome
profile of WFYT025 was similar to that of its female
parent WFB (Fig. 2).
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Validation of gene expression by quantitative real-time
PCR (qRT-PCR)
To validate the results of mRNA sequencing data, the
expression of a subset of 15 randomly selected DGHP

was determined by qRT-PCR. The list of primer se-
quences is presented in Additional file 2: Table S1. The
results obtained from qRT-PCR and RNA-seq were
compared, and expression trends were consistent for all

transcripts in both analyses; the correlation coefficient
(R2) was 0.9339 (Fig. 3).

Analysis of differentially expressed genes (DEGs)
We adopted reads per kilobase million reads (FPKM) to
measure gene expression levels. Two criteria were con-
sidered to identify putative DEGs: (1) the false discovery
rate (FDR) should be ≤0.05 and (2) the fold change (FC)

Fig. 1 Comparisons of super hybrid WFYT025 combination. a The upper panel illustrates the panicles from combination of super hybrid
WFYT025. Left, CHT025; middle, WFYT025; right, WFB. The lower panel shows the combination of super hybrid WFYT025. Left, CHT025; middle,
WFYT025; right, WFB. b Panicle traits of CHT025, WFYT025, and WFB

Table 1 Phenotypic Analysis of Super Hybrid WFYT025 Combination

Traits CHT025 WFYT025 WFB MPH (%) HPH (%)

Spike length(cm) 23.24 ± 1.75 24.34 ± 0.67 19.61 ± 1.71 13.64** 4.74

Primary branch number 12.89 ± 1.45 11.45 ± 1.00 8.46 ± 1.26 7.10* − 11.21

Secondary branch number 49.26 ± 9.66 45.67 ± 5.44 26.51 ± 5.21 20.39* − 7.28

Solid grain number 227.40 ± 42.72 221.43 ± 18.30 141.42 ± 17.60 20.01* − 2.63

Total grain number 251.36 ± 40.39 247.08 ± 21.20 151.21 ± 17.89 22.64** − 1.70

Empty grain number 23.95 ± 6.52 25.65 ± 10.68 9.78 ± 2.49 51.30* 7.08

Seed setting ratio (%) 89.65 ± 0.04 89.04 ± 4.29 93.05 ± 1.62 −2.54 −5.16

1000-grain weight (g) 18.64 ± 0.92 22.44 ± 0.63 23.60 ± 0.34 6.25* − 5.15

Tiller 6.8 ± 0.92 8.7 ± 1.25 10.4 ± 2.50 1.16 −16.34

Yield per plant (g) 29.89 ± 7.02 42.8 ± 2.80 34.8 ± 6.89 32.32** 22.99**

**Significant difference with p < 0.01
*Significant difference with p < 0.05
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should be ≥2. Following these criteria, 4160 DEGs have
been identified between paternal line CHT025 and
WFYT025. Of these, 2155 DEGs were up-regulated and
2005 were down-regulated. Additionally, 2809 DEGs
were identified between maternal line WFB and
WFYT025, of which 1463 DEGs were up-regulated and
1346 DEGs were down-regulated (Table 3). For a de-
tailed comparison, the FPKM of all transcripts is pre-
sented in Additional file 3: Table S2. DEGs between
parents are designated DGPP, and DEGs among the hy-
brid and parents are designated DGHP. DGHP may be
relevant to heterosis because differences in expression
between hybrids and parents should underlie their
phenotypic differences. While DGPP only refers to the
differences among the two parental lines (Song et al.
2010), there are still 3223 DGHPs that overlapped with
DGPP, which indicates that these DGPP are also associ-
ated with heterosis (Fig. 4). In addition, 1059 DGHPs
were shared between the hybrid and both of its parents.

The mode of inheritance for DGHP

Using the method to evaluate the mode of inheritance,
DGHP were classified into four expression patterns:
over-dominance (Hp ≤ − 1.2 or Hp > 1.2), dominance (−
1.2 < Hp ≤ − 0.8 or 0.8 < Hp ≤ 1.2), additive effect (− 0.2 <
Hp ≤ 0.2), and partial dominance (− 0.8 < Hp ≤ − 0.2 or

0.2 < Hp ≤ 0.8) (Additional file 4: Table S3). As shown in
Fig. 5, these data suggested that the over-dominant ef-
fect, dominant effect, partially dominant effect and addi-
tive effect accounted for 63.1%, 17.3%, 15.6% and 4.0%,
respectively.

Functional classification of DGHP by Gene Ontology (GO)
We applied Gene Ontology (GO) to classify the function
of the mRNA. Using Web Gene Ontology Annotation
Plot (WEGO) software (Ye et al. 2006), we distributed
5910 DGHP into at least one term in the GO molecular
function, cellular component, and biological process cat-
egories. Further analysis showed that 5910 DGHP were
present in 54 functional subcategories at a significance
level of p < 0.05 (Fig. 6). In the cellular function category,
cells and cell parts were mainly divided in the groups.
For the molecular function category, DGHP was enriched
with binding and catalytic activity. With respect to bio-
logical processes, cellular and metabolic processes were
highly enriched in DGHP. We further analysed the GO
terms of DGHP enriched with the biological process
subcategories. These GO terms, including response to
stimulus, cell proliferation, carbohydrate metabolic
process, organ formation, and gibberellin biosynthetic
process, may underlie heterosis in the young panicle of
WFYT025 (Tables 4 and 5).

DGHP mapping Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway
For the identification of metabolic pathways in which
DGHP were involved and enriched, the Kyoto
Encyclopedia of Genes and Genomes pathway database
was used. In total, 118 pathways were identified in 613
DGHP (between paternal line CHT025 and hybrid line
WFYT025). The top 20 most enriched pathways mainly

Table 2 Number of Mapped Reads

Sample Total Reads Mapped Reads Mapping Ratio (%)

CS 27,507,194 22,157,870 80.55

YS 21,214,278 17,312,734 81.61

BS 38,511,686 31,076,870 80.69

Total 87,233,158 70,547,474 80.95

CS, YS and BS stand for the samples from CHT025, WFYT025, WFB, respectively

Fig. 2 Hierarchical clustering analysis of all gene models based on expression data. Each horizontal line refers to a gene. The color key represents
RPKM normalized log2 transformed counts. With the color varied from blue to red, the expression of transcripts are from low to high. CS 1 to 3,
YS 1 to 3 and BS 1 to 3 stand for the replicated samples from CHT025, WFYT025, WFB, respectively
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covered carbon fixation in photosynthetic organisms,
DNA replication, fatty acid biosynthesis and metabolism,
and phenylpropanoid biosynthesis (Fig. 7a). In contrast,
268 DGHP between maternal line WFB and WFYT025
were classified into 107 pathways, and the top 20 most
enriched pathways were mainly concentrated in plant
hormone signal transduction, carotenoid biosynthesis,
diterpenoid biosynthesis, zeatin biosynthesis, and cyst-
eine and methionine metabolism with a significance
level of p < 0.05 (Fig. 7b). This suggests that the consid-
erable differences in young panicles between WFB and
WFYT025 may be related to hormone regulation.

Comparison of DGHP with grain yield-related genes (QTLs)
We were able to map the DGHP that were significant in
the KEGG analysis (P < 0.05) between WFYT025 and
WFB for the QTLs associated with grain yield in the
rice genome (http://www.gramene.org). As shown in
Table 6, a total of 36 transcripts were mapped in the
interval of 22 yield-related QTLs, including 15 grain
number QTLs, 6 1000-grain weight QTLs and 1 yield
per plant QTL. Most genes shared the same location
with one yield-related QTL. However, Os03g0856700
corresponded to qGP3–1 for grain number and
qSNP-3b for spikelet number per panicle.
Os04g0229100 was mapped to the same loci as qGwt4a
for 1000-grain weight and qSNP-4a for spikelet number
per panicle, while Os04g0578400 and Os04g0608300

shared the same chromosome segment with qGPP-4 for
grain number per panicle and qSNP4–1 for spikelet
number per panicle.

Discussion
Though heterosis has been extensively exploited in plant
breeding and plays an important role in agriculture, the
molecular and genetic mechanisms underlying this
phenomenon remain poorly understood. Differential
gene expression between a hybrid and its parents may
be associated with heterosis (He et al. 2010; Kim et al.
2013; Zhang et al. 2008). Here, we investigated the rela-
tionship between transcriptional profiles and heterosis in
super hybrid rice WFYT025 by RNA-Seq.

Comparative analysis of DGHP

Using RNA-Seq analysis, 872 million high-quality
paired-end reads of 150 bp were generated from the
panicles of WFYT025 and its parental lines at the pan-
icle differentiation stage, and 27,917 annotated tran-
scripts were identified. Of these transcripts, 4160 DGHP

between hybrid WFYT025 and paternal line CHT025
and 2809 DGHP between hybrid WFYT025 and maternal
line WFB were identified.
The filled grain number heterosis exhibited significant

differences between WFYT025 and WFB; however, there
were no significant differences between WFYT025 and
CHT025 (Fig. 1b, Table 1). Therefore, the results suggest
that the expression of DGHP between WFYT025 and
WFB at the young panicle development stage may play
an important role in grain number heterosis compared
to that between WFYT025 and CHT025. Therefore, fo-
cusing on the expression of DGHP between WFB and
WFYT025 might find an association between DGHP and
heterosis for filled grain number.

Fig. 3 Comparison of the log2 (FC) of 15 randomly selected transcripts using RNA-Seq and qRT-PCR

Table 3 Number and Classification of DGHP

Pattern WFYT025 / CHT025 WFYT025 / WFB

Up 2155 1463

Down 2005 1346

Total 4160 2809
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The genetic basis of heterosis
We have been able to identify a number of DGHPs under-
lying grain number between hybrid WFYT025 and mater-
nal line WFB, confirming the suggestion that heterosis is a
polygenic phenomenon (Kusterer et al. 2007; Bian et al.
2011). Among the DGHP, 17.3% had a dominant effect,
15.6% had a partial dominant effect, 4% had an additive ef-
fect and the remaining 63.1% had an over-dominant effect.
Thus, over-dominance was the major contributor to the
heterosis of WFYT025.
Meanwhile, the expression differences of cloned yield

trait genes have been investigated between the hybrid and
its parents. Of the 143 genes related to grain yield traits,

11 genes, accounting for 7.7%, showed over-dominance;
12 genes, accounting for 8.3%, showed dominance; 71
genes, accounting for 49.6%, showed partial dominance;
and 49 genes, accounting for 34.4%, showed partial dom-
inance (Additional file 5: Table S4).

The role of hormone signal transduction in heterosis
It is well known that hormones act as signalling molecules
in plants and can regulate physiological responses. Tran-
scriptome analysis has uncovered many DGHPs that are in-
volved in the phytohormone response in young panicle
tissue. For example, mRNA levels of Os12g0586100 encod-
ing SNF1-related protein kinase2 (SnRK2), whose

Fig. 4 DEGs in super hybrid WFYT025 combination. Venn diagram of DEGs between the hybrid and its parents. CS, YS and BS represent CHT025,
WFYT025 and WFB, respectively

Fig. 5 Breakdown of the DGHP according to the dominance ratio Hp. Depending on the principal of Hp = [d] / [a], Hp was classified as either
positive or negative
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autophosphorylation is required for kinase activity towards
downstream targets, were expressed poorly in WFYT025
compared to its parents. In addition, type-2C protein phos-
phatase (PP2C, a negative regulator) (Os01g0846300,
Os05g0572700, Os01g0656200 and Os03g0268600) was
up-regulated, and a similar observation was also reported
by Merlot et al. (2001) and Zhai et al. (2013). These results
are consistent with the negative-feedback regulatory mech-
anism in ABA signal transduction.
Moreover, transcripts involved in the gibberellin (GA) bio-

synthesis pathway were also differentially expressed between
the hybrid and its two parents, in this study. GAs are a large
family of diterpenoid compounds, some of which are bio-
active growth regulators that control flower development

(Cowling et al. 1998). GAs are involved in the transform-
ation of vegetative reproduction to reproductive growth
(Poethig 1990; Evans and Poethig 1995). OsGA20ox1
(Os03g0856700) encodes a GA20 oxidase, which is the key
enzyme that catalyses the penultimate step reaction of gib-
berellin biosynthesis and enhances the grain number of rice
by increasing the cytokinin activity in the rice panicle meri-
stem (Wu et al. 2016). In this study, we observed that the
expression level of OsGA20ox1 in WFYT025 is up-regulated
2-fold higher than in WFB and showed over-dominance
(Additional file 5: Table S4). This suggested that WFYT025
may possess strong potential for gibberellin biosynthesis
compared to maternal line WFB, which promoted the
amount of spikelet primordium in hybrid line WFYT025.

Fig. 6 Comparison of Gene Ontology (GO) classifications of DGHP. a CS and YS represent CHT025 and WFYT025 respectively. Red column and
green column represent up-regulated and down-regulated transcripts respectively. b BS and YS represent WFB and WFYT025 respectively. Red
column and green column represent up-regulated and down-regulated transcripts respectively
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The significant DGHP related to grain yield QTLs
We compared the significantly enriched DGHP to grain
yield QTLs. As shown in Table 6, among the DGHP-cor-
related QTLs, many QTLs were well characterized, in-
cluding those for grain per panicle (e.g., qGP-1a (Yu et
al. 1997), qNG-1 (Lin et al. 1996), qGP3–1 (Li et al.
2001), qGPP-4 (Xiao et al. 1996), qGP-6 (Hua et al.
2002), qGP-7a (Li et al. 2000)); number of spikelets on
secondary branches per panicle (e.g., qSSBP1–1 (Cui et
al., 2002)); spikelet number per panicle (e.g., qSNP-3b
(Xu et al. 2001), qSNP-4a (Mei et al. 2006), qSNP4–1
(Takai et al. 2005), qSP6–1 (Zhuang et al. 2001), qSNP-6
(He et al. 2001), qNFPB-11 (Yamagishi et al. 2004));
spikelet density (e.g., qSD-15 (Li et al. 1998) and
qSSD-10 (Xiao et al. 1996)); 1000-grain weight (e.g.,
qgw362 (Ishimaru 2003), qGW3.1 (Thomson et al. 2003),

qGwt4a (Lin et al. 1995), qKw5 (Li et al. 1997), qGw-6
(Lu et al. 1996), and qGw7 (Li et al. 2000)); and yield per
plant (e.g., yd7a (Li et al. 2000)).
The potential association between DGHP and QTLs

was also suggested within many QTL regions, including
putative protein phosphatase 2C (Os01g0846300) with
qSSBP1–1 for the number of spikelets on secondary
branches per panicle and putative transketolase
(Os05g0408900) with qSD-15 for spikelet density. Inter-
estingly, OsGA20ox1 (Os03g0856700), which is related
to gibberellin biosynthesis, is located in both qGP3–1 for
the number of grains per panicle and qSNP-3b for the
spikelet number per panicle. Putative fatty acid hydroxy-
lase (Os04g0578400), which is involved in carotenoid
biosynthesis, and OsSAUR20-Auxin-responsive SAUR
gene family member (Os04g0608300) was shared in both
qSNP4–1 for spikelet number per panicle and qGPP-4
for number of grains per panicle. Except for a small
number of cloned genes, such as Os01g0788400,
Os02g0697400, Os02g0771600, OsGA20ox1 (Os03g0
856700), Os03g0760200, Os03g0645900, Os04g0474800,
Os04g0522500, Os04g0556500, Os05g0380900, Os07g01
54100, and Os07g0155600, the remaining genes(includ-
ing Os01g0846300, Os05g0408900, Os04g0578400 and
Os04g0608300), which have been located in grain yield
QTLs (including grain number, 1000-grain weight, and
yield), were not cloned. Studying the function of these
candidate transcripts in these QTL regions may increase
the knowledge of the molecular mechanisms underlying
heterosis.

Transcription factors probably underlying heterosis
Since transcripts are always under different levels of regu-
lation, such as transcription and splicing through genetic
or epigenetic mechanisms, the detailed sequence compari-
sons and validations for different alleles of annotated
DGHP are not suitable to display in this current report.
Transcription factors (TFs) are certainly one of the causes
of gene expression fluctuations. In this study, we indeed
found that 51 TFs showed significant differential expres-
sion in the hybrid compared with the maternal line (Add-
itional file 6: Table S5). It is a coincidence that a previous
study also proposed that altered gene expression caused
by interactions between transcription factor allelic pro-
moter regions in hybrids was one reasonable mechanism
underlying heterosis in rice (Zhang et al. 2008).
Furthermore, among the 51 TFs, we found that LAX1,

which is the main regulator involved in the formation of ax-
illary bud primordium in rice, is overrepresented in the hy-
brid (Komatsu et al. 2003). MADS-box 55 (MADS50) was
up-regulated significantly, and MADS-box 56 (MADS56)
was down-regulated in the hybrid compared to the mater-
nal line (Additional file 6: Table S5). This is consistent with
a previous study that suggests that OsMADS50 and

Table 4 Significant GO Terms of DGHP Between CS and YS in
the Biological Process Category

GO ID Description p-value

GO:0042221 Response to chemical 0.000000

GO:0010035 Response to inorganic substance 0.000000

GO:0008283 Cell proliferation 0.000000

GO:0006260 DNA replication 0.000000

GO:0005975 Carbohydrate metabolic process 0.000004

GO:0006629 Lipid metabolic process 0.000088

GO:0009725 Response to hormone 0.000276

GO:0044550 Secondary metabolite biosynthetic process 0.000291

GO:0000281 Mitotic cytokinesis 0.000378

GO:0061640 Cytoskeleton-dependent cytokinesis 0.000378

GO:0051301 Cell division 0.001546

GO:0019344 Cysteine biosynthetic process 0.001784

Table 5 Significant GO Terms of DGHP Between BS and YS in
the Biological Process Category

GO ID Description p-value

GO:0006950 Response to stress 0.000012

GO:0050896 Response to stimulus 0.000047

GO:0048645 Organ formation 0.006863

GO:0071265 L-methionine biosynthetic process 0.008974

GO:0009686 Gibberellin biosynthetic process 0.009689

GO:0010160 Formation of organ boundary 0.011830

GO:0003156 Regulation of organ formation 0.016135

GO:0045596 Negative regulation of cell differentiation 0.016135

GO:0048497 Maintenance of floral organ identity 0.016135

GO:0010077 Maintenance of inflorescence meristem identity 0.017878

GO:2000027 Regulation of organ morphogenesis 0.030664

GO:0048586 Regulation of long-day photoperiodism,
flowering

0.034206

GO:2000028 Regulation of photoperiodism, flowering 0.044460
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OsMADS56 function antagonistically in regulating
LD-dependent flowering (Ryu et al. 2009). Certainly, except
for 21 reported TFs, the remaining 30 novel TFs might play
an important role in the young panicle and grain number
heterosis.

Conclusions
In this study, we systematically investigated the tran-
scriptome profiles from super-hybrid rice WFYT025
combinations for young panicles at the panicle differ-
entiation stage by deep high-quality sequencing. We
obtained a large amount of DGHP and found that the
over-dominance effect is the main mode of inherit-
ance for DGHP. Comparing the significantly enriched
DGHP (P < 0.05) between WFYT025 and WFB with
QTLs in response to grain number, we found some
candidate transcripts that may contribute to the in-
crease in grain yield. Exploring these candidate tran-
scripts will provide new opportunities for revealing
the heterosis of grain yield.

Methods
Plant materials and growth conditions
The hybrid WFYT025 along with its parental lines
Changhui T025 (CHT025) and Wufeng B (WFB) were

planted in the experimental field of Jiangxi Agricultural
University. WFYT025 is a super-hybrid rice combin-
ation derived from the cross between female parent
WFB and male parent CHT025. WFYT025 and the two
parents were sown at the experimental plot in Jiangxi
Agricultural University in a completely randomized
block design with three replications in autumn 2016.
Each plot consisted of 50 rows, with each row consist-
ing of 10 plants, each separated from its neighbour by
20 cm. Crop management followed normal procedures
for rice. These three lines were selected in this study to
measure phenotypic traits and conduct transcriptome
analyses. At maturity time, panicles were selected with
ten replicates for the estimation of heterosis. The young
panicles at the differentiation stage were collected and
stored at − 80 °C for RNA-Seq analysis, and each sam-
ple had at least three biological replications to
minimize systematic errors.

Panicle heterosis measurements
To determine 1000-grain weight, panicles were dried in
an oven at 42 °C for 1 week. Panicle length, primary
branch, secondary branch, number of filled grains and
total grain number were measured manually. Mid-parent
heterosis (MPH) and higher parent heterosis (HPH)

Fig. 7 KEGG pathway assignments of DGHP. a KEGG analysis of DGHP between CHT025 and WFYT025. b KEGG analysis of DGHP between WFB
and WFYT025. Both (a) and (b) showed the top 20 most represented categories and the number of transcripts predicted to belong to
each category
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were calculated for these traits according to the follow-
ing formulas: MPH = (F1 −MP) / MP and HPH = (F1 −
BP) / BP, where F1 is the performance of the hybrid, MP
is the average performance of the two parents and BP is
the performance of better parents. Hypothesis testing
was performed using a t-test.

RNA extraction, cDNA library preparation and sequencing
Total RNA was extracted from rice panicles using Trizol re-
agent (Invitrogen, Carlsbad, CA, USA) and purified using
an RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) ac-
cording to the manufacturer’s instructions. The quality and
integrity of RNA were tested using an Agilent Bioanalyzer
2100 system (Agilent, Santa Clara, CA, USA); RNA Integ-
rity Number (RIN) values were greater than 8.5 for all sam-
ples. After total RNA extraction, eukaryotic mRNA was
enriched by Oligo (dT) beads, while prokaryotic mRNA was
enriched by removing rRNA using the Ribo-Zero TM

Magnetic Kit (Epicentre). Then, the enriched mRNA was
fragmented into 200-bp segments using fragmentation buf-
fer and reverse transcribed into cDNA with random
primers. Second-strand cDNA synthesis was subsequently
performed using DNA polymerase I, RNase H, dNTP and
buffer. Then, the cDNA fragments were purified with QIA-
quick PCR extraction kit, end repaired, poly (A) added, and
ligated to Illumina sequencing adapters. The ligation prod-
uct size was selected by agarose gel electrophoresis, PCR
amplified, and sequenced with 100 cycles of paired-end se-
quencing (2 × 150 bp) using Illumina HiSeq TM 2500 by
Gene Denovo Biotechnology Co. (Guangzhou, China). The
processing of fluorescent images into sequences,
base-calling and quality value calculations were performed
using the Illumina data processing pipeline (version 1.8).
The sequence reads were submitted to the NCBI Sequence
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) under
the accession number SRP127997.

Table 6 Significant differentially Expressed Transcripts Mapped in each of the QTL Regions

Trait QTL Chr Intervel DGHP

GPP qGP-1a 1 RM1-R753 Os01G0135700, Os01G0150800

NGP qNG-1 1 RG374-RG394 Os01G0788400

NSP qSSBP1–1 1 C86-C2340 Os01G0846300

GW qgw362 2 C1445-C560 Os02G0697400, Os02G0771600

GPP qGP3–1 3 G249-RG418 Os03G0760200,Os03G0762400,
Os03G0797800, Os03G0856700

SNPP qSNP-3b 3 RM227-RM85 Os03G0856700

GW qGW3.1 3 RZ672-RZ474 Os03G0423300, Os03G0645900

GW qGwt4a 4 RG788-RG190 Os04G0229100

SNPP qSNP-4a 4 RM401-RM335 Os04G0229100,Os04G0474800,
Os04G0486950,

GPP qGPP-4 4 RZ569-RZ565 Os04G0492800,Os04G0498700,
Os04G0518100, Os04G0522500
Os04G0535600,Os04G0556500,
Os04G0565200, Os04G0578400,
Os04G0608300,Os04G0611700,
Os04G0611800,Os04G0618700

SNPP qSNP4–1 4 RM303-RM255 Os04G0578400,Os04G0608300

GW qKw5 5 RG182-RG13 Os05G0374200, Os05G0380900

SD qSD-15 5 RG13-RG346 Os05G0475400,Os05G0551700,
Os05G0408900

GW qGw-6 6 C235-G294 Os06G0347100, Os06G0486900

SP qSP6–1 6 RG138-RZ398 Os06G0185100

GPP qGP-6 6 RZ667-RG424 Os06G0347100

SSP qSPN-6 6 C236-G294 Os06G0486900

GW qGw7 7 R1440-RG128 Os07G0154100, Os07G0155600

YPP yd7a 7 R1440-RG128 Os07G0154100, Os07G0155600

GPP qGP-7a 7 R1440-RG128 Os07G0154100

SSD qSSD-10 10 RG257-RZ583 Os10G0419400,Os10G0422200,
Os10G0430200, Os10G0472900

NFPB qNFPB-11 11 RM286-RM332 Os11G0141400, Os11G0152700
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Identification of differentially expressed mRNAs
Raw reads generated from high-throughput sequencing
were treated as follows. First, to remove adapters that
were added for reverse transcription and sequencing, se-
quences with too many unknown bases (>10%) and
low-quality bases (>50% of the bases with a quality score ≤
20) were removed. The reads mapped to the ribosome
RNA (rRNA) database were removed with the read align-
ment tool Bowtie 2 (Langmead and Salzberg 2012). The
remaining reads of each sample were then mapped to the
Nipponbare reference genome (IRGSP build 1.0) by
TopHat2 (version 2.0.3.12) (Kim et al. 2013). The parame-
ters for alignment were set as follows: 1) the maximum
read mismatch should be 2; 2) the distance between
mate-pair reads should be 50 bp; 3) the error of distance
between mate-pair reads should be ±80 bp. Differential
expression was estimated and tested using the software
package edgeR (R version: 2.14, edge R version: 2.3.52)
(Robinson et al. 2010). We quantified gene expression
levels in terms of fragments per kb for a million reads
(FPKM) (Mortazavi et al. 2008), calculated the false dis-
covery rate (FDR), and estimated the fold change (FC) and
log 2 values of FC. Transcripts that exhibited an FDR ≤
0.05 and an estimated absolute log2(FC) ≥ 1 were consid-
ered to be significantly differentially expressed.

The mode of inheritance analysis
For statistical analysis, the analysis of variance (ANOVA)
was usually by the model: y = u + (GA) + (GD) + (SR) + e,
where y is the acquired gene expression, u is the overall
mean, GA is the additive effect, GD is the dominant effect,
SR is the replication effect, and e is the residual error
(Lynch and Walsh 1998). Hp = [d]/[a], referred to as the
dominance ratio or potency (where [a] and [d] represent
GA and GD, respectively), was also calculated to measure
the non-additivity of the F1 hybrid relative to its parents
(Griffing 1990). Considering gene expression levels as
quantitative traits, we adopted traditional quantitative
genetic parameters, such as composite additive effect [a]
and composite dominance effect [d], to estimate our ex-
pression profile. DGHP were classified according to the
dominance ratio Hp (= [d]/[a]), based on 99.8% confi-
dence intervals constructed for [d] - [a] ([d] > 0) and [d]
+ [a] ([d] < 0). According to the value of Hp (=[d]/[a]), we
considered that these genes belonged to partial dominance
(− 0.8 <Hp ≤ − 0.2 or 0.2 < Hp ≤ 0.8), over-dominance
(Hp ≤ − 1.2 or Hp > 1.2), dominance (− 1.2 < Hp ≤ − 0.8 or
0.8 < Hp ≤ 1.2) and additive effect (− 0.2 <Hp ≤ 0.2) (Stu-
ber et al. 1987, Bian et al. 2011).

Cluster analysis
Cluster analysis of all annotated transcripts from the hybrid
and its parents was performed. The FPKM-normalized ex-
pression counts for each transcript were clustered with the

software Cluster 3.0, and the results were visualized using
Treeview (Eisen et al. 1998).

Real-time quantitative PCR
The expression of genes with differential expression
(DEGs) and results of RNA sequencing were validated
by quantitative real-time PCR. Total RNA from nine
samples (including three biological replicates) was ex-
tracted using the Prime Script™ RT reagent Kit with
gDNA Eraser according to the manufacturer’s instruc-
tions. SYBR-based qRT-PCR reactions (SYBR Green I,
Osaka, Japan) were performed on an ABI VIIA@7 using
the following thermal cycling conditions: 50 °C for
2 min; 95 °C for 5 min followed by 40 cycles at 95 °C for
15 s and 60 °C for 34 s. All qRT-PCR reactions were per-
formed in triplicate samples, and the results were ana-
lysed with the system’s relative quantification software
(ver. 1.5) based on the (ΔΔCT) method. The detection
of the threshold cycle for each reaction was normalized
against the expression level of the rice Actin1 gene with
the primer sequences 5′-TGGCATCTCTCAGCACATT
CC-3′ and 5′-TGCACAATGGATGGGTCAGA-3′.
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