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Abstract

Background: Hybrid breeding is an effective tool to improve yield in rice, while parental selection remains the key
and difficult issue. Genomic selection (GS) provides opportunities to predict the performance of hybrids before
phenotypes are measured. However, the application of GS is influenced by several genetic and statistical factors.
Here, we used a rice North Carolina II (NC II) population constructed by crossing 115 rice varieties with five male
sterile lines as a model to evaluate effects of statistical methods, heritability, marker density and training population
size on prediction for hybrid performance.

Results: From the comparison of six GS methods, we found that predictabilities for different methods are significantly
different, with genomic best linear unbiased prediction (GBLUP) and least absolute shrinkage and selection operation
(LASSO) being the best, support vector machine (SVM) and partial least square (PLS) being the worst. The marker density
has lower influence on predicting rice hybrid performance compared with the size of training population. Additionally,
we used the 575 (115 × 5) hybrid rice as a training population to predict eight agronomic traits of all hybrids derived from
120 (115 + 5) rice varieties each mating with 3023 rice accessions from the 3000 rice genomes project (3 K RGP). Of the
362,760 potential hybrids, selection of the top 100 predicted hybrids would lead to 35.5%, 23.25%, 30.21%, 42.87%, 61.
80%, 75.83%, 19.24% and 36.12% increase in grain yield per plant, thousand-grain weight, panicle number per plant,
plant height, secondary branch number, grain number per panicle, panicle length and primary branch number,
respectively.

Conclusions: This study evaluated the factors affecting predictabilities for hybrid prediction and demonstrated the
implementation of GS to predict hybrid performance of rice. Our results suggest that GS could enable the rapid selection
of superior hybrids, thus increasing the efficiency of rice hybrid breeding.
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Background
The primary mission of rice breeding is to develop high-
yield varieties to improve production to meet the global
food demand (Xu et al. 2014). Hybrid breeding facilitates to
increase rice yield by taking advantage of heterosis, which
lead to an approximately 40% increase in rice yield per area
during the past 30 years (Beukert et al. 2017). The biggest
challenge in hybrid breeding resides in how to efficiently

select desired hybrids out of all potential hybrids. In the
early days, selection of parental lines largely depends on the
experience of breeders, leading to a great deal of uncer-
tainty as well as wasting enormous labor and time in ex-
perimental evaluation. Genomic selection (GS) has been
proposed as a promising tool to overcome the challenge
(Meuwissen et al. 2001). GS can be considered as a novel
alternative to traditional marker assisted selection (MAS)
for quantitative traits (Hickey et al. 2017). The aim of GS is
to combine whole-genome molecular markers and pheno-
types in a training population to predict genetic values of
future individuals in a test population for selection and no
significant test is required, thus avoiding biases in marker
effect estimates as well as accelerating the breeding cycle
(Desta and Ortiz 2014). Contrary to MAS, GS is suitable
for quantitative traits controlled by a large number of
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small-effect genes. Motivated by the great success in
enhancing the rate of genetic gain of livestock breeding, GS
has been introduced to plant breeding in many areas, for
instance, inbred performance prediction and hybrid
prediction (Riedelsheimer et al. 2012a; Crossa et al. 2014;
Xu et al. 2014; Wang et al. 2017; Xu 2017).
In hybrid breeding, GS predict the performance of all

potential crosses of a given parent set with parents geno-
typed and a small proportion of crosses evaluated in the
field, significantly reducing the cost of hybridization and
experimental evaluation of all potential crosses.
Although GS has been applied to predict hybrid per-
formance, few GS studies in rice hybrid breeding have
been implemented. Xu et al. (2014) provided a proof of
concept for hybrid prediction using an immortalized F2
population in rice and found that selection of top 100
hybrids would lead to a 16% increase in yield, which in-
dicated the potential of using GS to improve yield in
rice. However, the narrow genetic background of the
parental materials that derived from the same parents
may limit the practical application to rice hybrid breed-
ing. In order to overcome this limitation, we constructed
a training population of rice for GS according to the NC
II design where 115 inbred varieties were crossed with
five male sterile lines. The 120 inbred parents were
genotyped and 575 hybrids were measured for eight
agronomic traits.
The accurate prediction is essential for successful

application of GS. The predictability, representing the
accuracy of prediction, obtained from cross-validation in
training population has been evaluated in maize, wheat
and barley (VanRaden 2008; Crossa et al. 2017). These
studies indicated that the predictability is affected by
various genetic factors including heritability, relatedness,
sample size and marker density, genetic architecture. In
general, the predictability increases as marker intensity
and sample size increases until reaches a plateau. The
marker density required is determined by how quickly
linkage disequilibrium (LD) decays in the population. If
LD decays slowly, a small number of markers are
required to scan the genome, and vice versa (Desta and
Ortiz 2014). The relatedness between training popula-
tion and test populations is also a key factor for predict-
ability. Predictability within full-sib or half-sib families is
much higher than that in unrelated groups. In a biparen-
tal maize population, including half-sibs from both
parents rather than increasing the size of the training
population randomly results in an increase in the
predictability (Jacobson et al. 2014). The predictability is
closely related to the heritability. The traits with higher
heritability tend to have higher predictability. The
predictabilities of low heritability traits, such as yield,
were consistently lower than high heritability traits, such
as kernel weight and plant height.

In addition to genetic factors, statistical factors have
influence on the predictability. Parametric methods in-
cluding genomic best linear unbiased prediction
(GBLUP) (VanRaden 2008), Bayesian methods (González-
Recio and Forni 2011), least absolute shrinkage and selec-
tion operator (LASSO) (Tibshirani 1996), partial least
squares (PLS) (Gelandi and Kowalski 1986) and nonpara-
metric methods including random forest (Svetnik et al.
2003), neural networks (NN) (Ehret et al. 2015), support
vector machine (SVM) (Maenhout et al. 2007) and repro-
ducing kernel Hilbert spaces regression (RKHS) (de Los
Campos et al., 2010) have been widely used for GS to pre-
dict genetic values. Several investigators have compared
the predictive performance of these methods using simu-
lation and empirical data (VanRaden 2008; Riedelsheimer
et al. 2012b; Howard et al. 2014; Wang et al. 2015). How-
ever, little information exists in comparing the prediction
accuracy of such methods in hybrid rice population.
It is worth noting that even if an accurate prediction

model is available, it is of no use without superior germ-
plasm resources. Fortunately, the 3000 rice genomes
project (3 K RGP) publicly released sequence data of
3023 rice accessions collected from 89 countries, which
provided rich germplasm materials for hybrid breeding
of rice (Li et al. 2014).
In order to determine the utility of using GS to guide

hybrid breeding in rice, we evaluated the accuracy of
genomic prediction for hybrid performance in a rice NC
II population where 115 inbred varieties were crossed
with five male sterile lines using six representative
methods including GBLUP, LASSO, BayesB, PLS, SVM
and RKHS. The genotypes of 120 inbred parents and
eight agronomic traits of 575 hybrids were measured.
We also assessed the influence of the statistical method,
heritability, marker number and training population size
on prediction for predicting hybrid performance.
Additionally, we predicted all potential crosses that be-
tween the 120 parental lines in the training population
and 3023 rice varieties in the 3 K RGP using the
optimum prediction models, and finally selected the
promising superior hybrids for further hybrid breeding.

Methods
Material collection
The hybrid rice population was constructed according to
NC II design. A total of 575 hybrids were generated by
crossing 115 inbred rice lines with five male sterile lines.
Phenotypic data of grain yield per plant (GY), thousand-
grain weight (TGW), productive panicle number per plant
(PN), plant height (PH), primary branch number (PB), sec-
ondary branch number (SB), grain number per panicle
(GN), and panicle length (PL) were collected from Wuhan
University and Huazhong Agricultural University in 2013.
At two locations, ten plants from each cross were planted
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with a randomized block design in two replicates and the
average phenotypic value of each cross from two locations
was used in the data analysis.
The 120 parental lines were genotyped using next-

generation sequencing and SNPs were called against Nip-
ponbare reference genome (IRGSP-1.0, http://rapdb.dna.
affrc.go.jp). Quality control of SNPs was performed by elim-
inating SNPs with missing rate above 20% in the male ster-
ile lines and above 50% in 115 inbred rice lines. In total,
2,561,889 SNPs remained after this filtering. The genotypic
data of 3023 germplasm accessions in 3 K RGP were re-
leased. Approximately 20 million SNPs were identified by
aligning reads from 3 K RGP with IRGSP-1.0. A total of
6,572,189 SNPs and 996,009 SNPs were selected in 3kRG
filtered SNP set v.4 and 3kRG core SNP set v.4, respectively
(Zhang et al. 2015). In order to predict potential crosses
between the 120 lines and 3023 rice varieties, we aligned
our rice SNP dataset with 3kRG filtered SNP set and core
SNP set, and then obtained two intersections including
2,054,293 SNPs and 116,482 SNPs, respectively. The geno-
types of the hybrids were deduced based on the genotypes
of the parental lines.

Models of prediction
We used four parametric methods including GBLUP,
LASSO, PLS, BayesB and two nonparametric methods
including RKHS and SVM to predict hybrid perform-
ance. The general model of these four parametric
methods is described as the following:

y ¼ Xβþ
Xm

k¼1

Zkγk þ ε ð1Þ

Where y is a vector for n observations, X is an n × q
design matrix, β is a q × 1 vector of fixed effects, m is
the number of markers, Zk is a column vector for geno-
type indicator variable, γk is additive genetic effect of
marker k, and ε is an n × 1 vector of residual errors with an
assumed N(0, Iσ2) distribution. The genotypic indicators of
marker k for individual j (where j = 1, 2,…, n) is defined as
− 1, 0, 1 for homozygote of the minor allele, heterozygote
and the homozygote of the major allele, respectively. The
GBLUP method assumes γk � Nð0; 1mϕ2Þ , where ϕ2 is
polygenic variance shared by all makers. The expectation
of y is E(y) =Xβ and the variance-covariance matrix is

var yð Þ ¼ V ¼ 1
m

Xm

k¼1

ZkZ
T
k ϕ

2 þ Iσ2

¼ Kϕ2 þ Iσ2 ¼ Kλþ Ið Þσ2 ð2Þ

where λ = ϕ2/σ2 is the variance ratio and K is a marker-
generated kinship matrix defined as

K ¼ 1
m

Xm

k¼1

ZkZ
T
k ð3Þ

To estimate the variance components, we used the
restricted maximum likelihood method (REML) to
maximize the following likelihood function,

L λð Þ ¼ −
1
2

ln j V
j − 1

2
y−Xβð ÞTV −1 y−Xβð Þ− 1

2
ln j XTV −1X j ð4Þ

where β is substituted byβ = (XTV−1X)−1XTV−1yand σ2 is
substituted byσ2 ¼ 1

n−q ðy−XβÞTV −1ðy−XβÞ . The solution
of λ was obtained by maximizing the above likelihood
function using the newton iteration algorithm. The
GBLUP method exploits the genomic relationships
between training population and testing population to
predict the genomic values for unknown individuals
without estimating marker effects. Here, GBLUP was
implemented in our own R program.
BayesB is a sampling algorithm based Bayesian ap-

proach, which assumes that the prior distribution of var-
iances across markers is a two-component mixture with
one component following an inverted chi-square distri-
bution and the other being a point mass at 0 (Meuwissen
et al. 2001). It can be summarized as γk � Nð0; σ2γk Þ ,
where σ2γk ¼ 0 with prob = π and σ2γk � χ−2ðv; SÞ with
prob = 1 ‐ π. The π, v and S are three parameters de-
fined in the original BayesB publication, where v and S
were set to 4.234 and 0.0429, respectively (Meuwissen et
al. 2001). In this study, we used “BGLR” package to im-
plement BayesB model and adopted the default values for
v and S. The parameter π was unknown and was assigned
a weakly informative Beta prior π ~ Beta(p0, π0), with
π0 = 0.5 and P0 = 10 as default values (Perez and de los
Campos 2014).
LASSO is a constrained form of ordinary least squares

with a bound on the sum of the absolute values of the
coefficients (Tibshirani 1996). The marker effect is
defined as

γ̂k ¼ arg min
β∈Ω

y−Xβ−
Xm

k¼1

Zkγk

 !T

y−Xβ−
Xm

k¼1

Zkγk

 !
þ λ

Xm

k¼1

jγk j
2
4

3
5

ð5Þ

Where λ is a shrinkage parameter. LASSO was first
implemented in GS by Usai et al. (2009). In this study,
LASSO was implemented in an R package called glmnet
(Friedman et al. 2010).
The PLS method incorporates principal component

analysis (PCA) into multiple regression analysis, and it
transforms independent variables into a few linearly
uncorrelated components as predictors to predict the
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phenotype. The number of components was determined
by cross-validation to have a minimum prediction error.
The PLS method was implemented using an R program
called pls (Mevik and Wehrens 2007).
The general form of these two nonparametric methods

is defined as:

y ¼ μþ Khαþ ε ð6Þ
Where μ is the population mean; Kh is a kernel func-

tion, which can be used to map the input data to a high-
dimensional space where the data can be more easily
separated; α and ε are assumed to have independent
prior distributions α � Nð0;Khσ2αÞ and ε~N(0, Iσ2). The
SVM method is a kernel based supervised learning
method for classification and regression, and Maenhout
et al. (2007) first applied it in GS to predict maize hybrid
performance. Several kernel functions, such as polynomial,
Gaussian radial basis function, and the linear kernel, have
been commonly used in SVM. Here, we chose the
Gaussian kernel function and implemented it in an R
package kernlab (Karatzoglou et al. 2004).
RKHS has been used for spatial smoothing, regression

and classification, in which the reproducing kernel (RK)
is one of the central elements of model specification.
Here, we selected the multi-kernel function and imple-
mented the method in the R package BGLR.

Predictability and heritability
The predictability for rice hybrid performance was eval-
uated using a fivefold cross-validation, where the sample
was randomly partitioned into five parts with four parts
being used to estimate parameters and the remaining
part being predicted. Finally, all parts were predicted
once and used four times to estimate parameters. The
predictability is defined as the correlation coefficient be-
tween the observed and predicted phenotypic values.
The predictability may be affected by how the sample is
partitioned into the fivefold. Therefore, we replicated the
cross-validation analysis 20 times to achieve the average
prediction results of these replicates. In order to identify
the impacts of training population size and marker num-
ber on predictability, we used different subsets of train-
ing population and markers to evaluate the
predictability.
Broad-sense heritability (H) can be calculated as described

by Knapp et al. (1985): H ¼ σ2g=ðσ2g þ σ2ge=eþ σ2ε=erÞ ,
where σ2

g is the genetic variance, σ2ge is genotype-by-

environment interaction variance, σ2ε is residual variance,
e is the number of environments and r is the number
of replications in each experiment. Here, we calculated
the broad-sense heritability based on the phenotypic data
collected from two locations with two replications using
analysis of variance (ANOVA).

Results
Comparison of predictabilities
By comparing our rice SNP dataset with 3kRG filtered
SNP set and 3kRG core SNP set, we obtained two rice
SNP intersections, all SNP set and core SNP set, both of
which were used to evaluate the accuracy of prediction.
The predictabilities of eight traits obtained from the
GBLUP method are illustrated in Fig. 1. Although the
number of markers in all SNP set (2,054,293) is much
larger than that in core SNP set (116,482), the predict-
abilities of using these two SNP datasets are nearly the
same for all the eight traits. To improve computational
efficiency, we used core SNP set in the follow-up
analyses.
The predictabilities of the eight traits obtained from

575 hybrids using all the six methods including GBLUP,
LASSO, PLS, BayesB, RKHS and SVM are summarized
in Table 1. The predictability is highly correlated to the
heritability of the trait with TGW and PH having the
highest predictabilities across all methods, followed by
traits PL and SB, with trait GY and PN being the worst
predictable traits. The predictabilities of most traits are
larger than 0.5, except GY and PN. For the same trait,
the largest differences in predictability among the six
methods vary from 0.007 to 0.046. Standard deviations
of predictabilities range from 0.0024 and 0.015 across
traits and methods, where the high predictable traits
tend to have smaller standard deviations than those low
predictable traits.

Analysis of variance for predictability
We performed analyses of variances for predictabilities
of eight traits and six methods over 20 repetitions. All

Fig. 1 Predictabilities of eight traits from two subsets of SNPs. All
SNP defines the intersection of our rice SNP dataset and 3kRG
filtered SNP set, including 2,054,293 SNPs; Core SNP defines the
intersection of our rice SNP dataset and core SNP set, including
116,482 SNPs. Error bars are constructed using one standard error
from the mean
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main effects and interaction effects are significant
(Table 2). Then we performed multiple comparisons for
the main effects and the results are presented in Fig. 2.
Predictabilities of the eight traits are significantly differ-
ent with TGW being the best, and PN and GY being the
worst (Fig. 2a). Among the six methods, GBLUP and
LASSO perform the best, followed by BayesB and RKHS,
and SVM and PLS perform the worst (Fig. 2b). Although
GBLUP and LASSO possess overall good performance,
different methods may be suitable for different traits.
From Additional file 1: Table S1, we can find that
GBLUP is the most efficient method for traits GN, PH
and TGW while LASSO is the most efficient for traits
PB and SB. SVM is the best method for trait PL, whereas
it is the worst for traits GN, SB and PN. BayesB per-
forms the best for GY and PN but the worst for PL. PLS
performs poorly for most traits.

Influence of marker number and training population size
on predictability
In order to determine the effect of marker density on
performing GS in a rice population of this kind, we se-
lected nine SNP subsets with the number of markers
varying from one hundred to one million. One hundred
selections in a random way were made for each subset
size. From Fig. 3, it is clear that there is nearly no differ-
ence in the predictability for each trait whether one mil-
lion SNPs are used or 5000 SNPs are used. When the
number of markers falls below one thousand, the

predictabilities begin to decrease significantly for all traits.
The result also reveals that the smaller the number of
markers, the larger the variation in predictabilities.
The impact of population size was also investigated

using the similar strategy. We selected five subsets vary-
ing from 115 individuals to the full 575 individuals. As
the number of individuals increases, we can observe an
increase in the predictability and a decrease in the vari-
ation of predictions for each trait (Fig. 4). The popula-
tion size has larger effects on predicting GY and PN
than other traits. As the size of training population de-
creases from 575 to 115, the predictabilities for PN and
GY drop by 77.94% and 68.23%, respectively. Although
both the marker density and the size of training popula-
tion have influences on the predictability, the influence
of population size on the predictability is considerably
greater than that of the marker density. For example, as
the number of makers decreases from one million to
one hundred, the predictabilities of eight traits only de-
cline by 9.27% on average, whereas the predictabilities
drop by 39.11% on average as the population size de-
creases from 575 to 115, which indicates that a large train-
ing population is necessary to obtain high predictability.

Predicting untested crosses using GBLUP
The high predictabilities of the eight traits obtained from
fivefold cross-validation indicate that genomic selection
will be effective for all traits, especially for TGW and
PH. According to the parameters estimated from this
training sample, we predicted all potential hybrids that
between the 120 inbred lines in the training population
and 3023 rice varieties in the 3 K RGP using the GBLUP
method. Afterwards, we sorted all of the predicted
phenotypic values in descending order and averaged the
selected top crosses to observe the gains of prediction.
Figure 5 shows the average predicted phenotypic values
for each trait against different numbers of top crosses.
The average predicted phenotypic values of the top

Table 1 Average predictabilities and their standard deviations (sd) for eight traits using six prediction methods

Trait Heritability GBLUP PLS LASSO BayesB SVM RKHS

mean sd mean sd mean sd mean sd mean sd mean sd

GY 0.3031 0.4057 0.0102 0.3832 0.0125 0.3923 0.0132 0.4095 0.0117 0.4032 0.012 0.4041 0.0122

TGW 0.8501 0.8833 0.0025 0.8735 0.0037 0.8821 0.0024 0.8819 0.0035 0.8791 0.0037 0.8829 0.0029

PN 0.2550 0.4122 0.0122 0.3849 0.0141 0.4156 0.015 0.4189 0.011 0.3731 0.0125 0.3975 0.0114

PH 0.7501 0.8647 0.0041 0.8564 0.0048 0.8642 0.0038 0.8629 0.0046 0.8644 0.0064 0.8601 0.0043

SB 0.6676 0.7158 0.0072 0.7085 0.0121 0.7181 0.0061 0.7122 0.0076 0.6862 0.0112 0.715 0.0081

GN 0.6262 0.6488 0.0085 0.6356 0.0093 0.6445 0.0089 0.6451 0.0095 0.6197 0.0133 0.6478 0.0094

PL 0.7802 0.7919 0.0045 0.7897 0.0049 0.7922 0.0041 0.7887 0.0044 0.7957 0.0043 0.7894 0.0048

PB 0.6944 0.6736 0.0069 0.6613 0.0077 0.6857 0.0062 0.6739 0.0076 0.6761 0.0058 0.6746 0.0066

Abbreviations: GY Grain yield per plant, TGW Thousand-grain weight, PN Productive panicle number per plant, PH Plant height, SB Secondary branch number, GN
Grain number per panicle, PL Panicle length, PB Primary branch number
Predictabilities are averaged over 20 cross-validation runs

Table 2 Analyses of variances of predictabilities for eight traits
and six prediction methods with 20 replications

Source DF Sum of Square Mean Square F-test p-value

Trait 7 29.2992 4.1856 57,118.62 <.0001

Method 5 0.0302 0.0060 82.35 <.0001

Method×Trait 35 0.0492 0.0014 19.19 <.0001

Residual 912 0.0668 7.33E-05
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crosses are much higher than those of all potential
crosses for all traits. For example, the average predicted
GY of the top 100 crosses is 51.46, while that of all
crosses is 38.13. If the top 100 crosses for GY are se-
lected for hybrid breeding, GY will increase by 13.33
(51.46–38.13), representing a 34.97% (13.33/38.13) gain.
For the other seven traits, with genomic selection of the
top 100 crosses, we expect to gain 23.25%, 30.21%, 42.
87%, 61.80%, 75.83%, 19.24% and 36.12% in TGW, PN,
PH, SB, GN, PL and PB, respectively. The combinations
of top 100 crosses for the eight traits are given in
Additional file 2: Table S2. Breeders can produce these
crosses in the field according to these results.

Discussion
In this study, we evaluated the influences of the statistical
method, heritability, marker number and training popula-
tion size on prediction for hybrid performance in rice.
From the comparison of different prediction methods, we
found that parametric methods (GBLUP, LASSO, BayesB)
performed better than nonparametric methods (RKHS

and SVM), but there was no method that fitted all traits
universally well. Previous studies have compared the per-
formance of the parametric models with the nonparamet-
ric models used in GS. Heslot et al. (2012) compared six
parametric methods and four nonparametric methods for
genomic prediction in wheat, maize and barley, and ob-
served that the RKHS method performed the best across
different species. Howard et al. (2014) assessed 14 para-
metric and nonparametric methods using simulated gen-
etic architectures, and found that parametric methods
performed slightly better than nonparametric methods for
additive genetic architectures, but parametric methods
had difficulty in capturing non-additive effects such as
epistatic effects. Generally, GBLUP is the most robust
method and generally gives the higher predictability
for highly polygenic traits; the Bayesian methods and
LASSO are better for traits with major genes; the
PLS method fits data better when individual predic-
tors are highly correlated; SVM and RKHS perform
well for traits under non-additive genetic architectures.
Some studies have confirmed that small gains in

Fig. 2 Multiple comparisons illustrated by boxplots. In each panel, different capital letters above the group labels indicate significant differences
between groups. In each boxplot, the cross sign represents the mean predictability. Panel a compares the predictabilities for the eight traits over
six methods and 20 replications. Panel b compares the predictabilities of the six methods across eight traits and 20 replications
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predictability can be obtained if the GS method is se-
lected according to the trait architecture (Riedelsheimer
et al. 2012b). If the genetic architecture underlying the
trait is unclear, both parametric and nonparametric
methods should be tried to cross-confirm the results.
Although the six GS methods differ slightly in their

predictabilities, the selected top individuals are different.
To verify it, we predicted GY and TGW of the 362,760

hybrids using the LASSO and GBLUP and then com-
pared the prediction results of these two methods. The
combinations of top 100 crosses selected based on
LASSO for GY and TGW are given in Additional file 3:
Table S3-S4. The correlation coefficients between
LASSO and GBLUP for predicted GY and TGW are
0.908 and 0.939, respectively. However, among the
top 100 crosses selected using LASSO and GBLUP,

Fig. 4 Effect of the population size on the predictability. Five subsets are selected with the number of individuals varying from 115 to 575.
Fivefold cross-validations are repeated 100 times for each subset of the training population. Error bars are constructed using one standard
error from the mean

Fig. 3 Effect of the marker density on the predictability. Nine subsets are selected with the marker number varying from 100 to 1,000,000.
Fivefold cross-validations are repeated 100 times for each subset of SNP markers. Error bars are constructed using one standard error from
the mean
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only 21 and 61 crosses are identical for GY and
TGW, respectively (marked in yellow in Table S3-S4).
To ensure the reliability of GS, we suggest to choose
elite hybrids selected by multiple GS methods.
We also found that the size of training population had

a greater impact on predicting hybrid performance than
the marker density did, which was in accordance with

earlier studies. The increase in predictability quickly
reaches a plateau as the number of markers increases. In
our study, the predictability plateaued when 5000
markers were used for prediction of all traits. Research
in an elite rice breeding population genotyped with
73,147 markers revealed that prediction accuracy
reached a plateau at 7142 SNPs with the rrBLUP method

Fig. 5 Predicted phenotypic values of selected top crosses plotted against the number of crosses selected. The two red dotted curves define
the 95% confidence intervals of the mean predicted phenotypic values. The black horizontal line in each panel denotes the average predicted
phenotypic value of all crosses for that trait. The plot is truncated at 5000, and the total number of top crosses is 362,760
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(Spindel et al. 2015). Therefore, a low-density marker
panel is desired to obtain a favorable cost-benefit ratio
for GS. With respect to the size of training population, it
has strong effect on the predictability. We observed a
monotonic increase in the predictability for each trait
with enhancing population size. For GY and PN, the pre-
dictabilities obtained from 575 individuals are almost
four times as high as those obtained from 115 individ-
uals. Therefore, increasing the size of training population
rather than increasing the marker number can be prefer-
able for rice hybrid prediction.
Currently, researches on GS are mainly based on the

additive model. In this study, the additive model was
used to predict hybrid performance in rice. However,
few studies have suggested that incorporating domin-
ance can produce similar or higher predictability than
only considering additive effects (Vitezica et al. 2013).
Here, we investigated the effects of additive and dominant
variances on the prediction of rice hybrid performance.
The predictabilities under additive and additive-dominant
model for eight traits were evaluated using the HAT
method (Xu 2017). The variances were estimated using
the REML analysis. The predictabilities and estimated
variance components are listed in Additional file 4: Table
S5. The result reveals that additive variances explain the
majority of the trait variances, and the improvement in
predictability by including dominance variances is mar-
ginal. This result is consistent with Xu et al. (2014)
who did not find benefit from adding non-additive
variance. This may be because the kinship matrix of
additive effect has already captured much information
about the kinship matrix of dominant effect. In con-
sideration of computation efficiency, it may not be
necessary to use additive-dominant model to predict
hybrid performance in rice.
This study demonstrated the application of GS for

predicting the hybrid performance in rice. We used 575
existing hybrids derived from 120 inbred parents as the
training population to predict all 362,760 potential hy-
brids that between the 120 inbred lines and 3023 rice
varieties in the 3 K RGP. Only the phenotypes of the
575 hybrids and genotypes of the inbred parents were
measured, which enormously reduced the cost of se-
quencing and experimental evaluation of all potential
crosses. Of all the potential hybrids, selection of the top
100 predicted hybrids would lead to a 35% gain in grain
yield. Xu et al. (2014) predicted that if the top 100
crosses of 21,945 hybrids were selected for yield, the gain
would be 16%. This high gain for the yield with low predict-
ability is mainly due to the high selection intensity of the
crosses, represented by the considerably small proportion
selected. Theoretically, the selected top crosses can bring a
substantial improvement of future hybrids, but these need
to be further tested and validated in designed experiments.

We are planning to generate the hybrids of the predicted
top, middle and last 50 hybrids from all the potential
hybrids and evaluate their performance in the field. Then,
breeders can select and produce the ideal crosses based on
the results of the present study and their experience.

Conclusions
We used a rice NCII population consisting of 575
hybrids to evaluate the genetic and statistical factors
affecting hybrid prediction in rice. The results showed
that predictabilities for different methods were signifi-
cantly different, with the GBLUP and LASSO methods
being better than the other methods. The size of training
population had greater influence on prediction for rice
hybrid performance compared with the marker density.
Additionally, selection of the top 100 crosses from all
potential hybrids that between the 120 inbred lines in
the NCII population and 3023 rice varieties in the 3 K
RGP will lead to substantial increase in yield. Our results
hold great promise for the implementation of GS in rice
hybrid breeding.
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