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Transcriptome profiling of the spl5 mutant reveals
that SPL5 has a negative role in the biosynthesis
of serotonin for rice disease resistance
Bin Jin1†, Xinru Zhou1†, Baolin Jiang1, Zhimin Gu1, Pinghua Zhang1, Qian Qian2, Xifeng Chen1* and Bojun Ma1*
Abstract
Background: Rice mutant, spl5 (spotted leaf 5), has spontaneous hypersensitive-like lesions on its leaves and shows
enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease
resistance. To understand the molecular mechanism of SPL5 gene, we investigated the transcriptome profiles of the
spl5 mutant leaves with few lesions (FL) and leaves with many lesions (ML) compared to the wild-type (WT) leaves
respectively by microarray.

Results: The data from microarray revealed that 243 and 896 candidate genes (Fold change ≥ 3.0) were up- or
down-regulated in the spl5-FL and spl5-ML, respectively, and a large number of these genes involved in biotic
defense responses or reactive oxygen species (ROS) metabolism. Interestingly, according to our microarray and
real-time PCR assays, the expressions of a transcription factor OsWRKY14 and genes responsible for the biosynthesis
of serotonin, anthranilate synthase (AS), indole-3-glycerolphosphate synthase (IGPS), tryptophan synthase (TS) and
tryptophan decarboxylase (TDC) were significantly up-regulated in the spl5 mutant. It has been reported previously
that TS and TDC expressions are regulated by OsWRKY14 in rice, which raises the possibility that OsWRKY14 regulates
serotonin production through the up-regulation of TS and TDC. Our HPLC analysis further confirmed that serotonin
levels were higher in the leaves of spl5 mutant than that in WT.

Conclusions: Since the serotonin plays a critical role in inducing disease-resistance, the increased serotonin level
may contribute, at least partly, to the disease resistance in spl5. The SPL5 gene may act as a negative regulatory factor
activating the serotonin metabolic pathway, and these results might provide a new insight into the spl5-induced
defense response mechanisms in plants.
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Background
In response to pathogen attack, plants have evolved an
elaborate defense system with a complex signaling net-
work. One of the most efficient resistance responses in
plants is the hypersensitive response (HR), which is
characterized by the rapid induction of local cell death
around the infection site (Morel and Dangl 1997). Previ-
ous research into the molecular mechanisms behind HR
has led to the discovery of mutants that display HR-like
cell death in plant species such as Arabidopsis (Lorrain
et al. 2003), maize (Johal et al. 1995), barley (Wolter
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et al. 1993), rice (Takahashi et al. 1999; Yin et al. 2000;
Mizobuchi et al. 2002), wheat (Nair and Tomar 2001)
and groundnut (Badigannavar et al. 2002). These mu-
tants are referred to as lesion mimic mutants (lmms)
because they spontaneously induce cell death and ex-
hibit HR-like lesions in the absence of pathogen attack
(Moeder and Yoshioka 2008). Many lmms spontan-
eously activate immune responses, such as reactive oxy-
gen species (ROS) bursts, callose deposition and the
induction of pathogenesis-related (PR) genes (Staskawicz
et al. 1995). Therefore, the lmms can be used to investi-
gate the molecular mechanisms behind HR and disease
resistance in plants.
At least 43 lmms have been isolated in rice (Wu et al.

2008) and most show enhanced resistance to blast and/
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or bacterial blight pathogens (Jung et al. 2005; Mori
et al. 2007; Qiao et al. 2010). Genetic analysis has indi-
cated that the rice lmms phenotypes are mostly con-
trolled by a single recessive or dominant gene (Huang
et al. 2010) and many lmm genes have been cloned and
characterized, such as spl7 (Yamanouchi et al. 2002),
spl11 (Zeng et al. 2004), NPR1 (Chern et al. 2005), lsd1
(Wang et al. 2005), Spl18 (Mori et al. 2007), ttm1
(Takahashi et al. 2007), acdr1 (Kim et al. 2009), spl28
(Qiao et al. 2010), sl (Fujiwara et al. 2010), edr1 (Shen
et al. 2011), rlin1 (Sun et al. 2011), lms (Jerwin et al. 2012)
and spl5 (Chen et al. 2012). However, the proteins
encoded by these LMM genes have different functions.
For example, SPL7 is a heat stress transcription factor
(Yamanouchi et al. 2002); SPL11 is an E3 ubiquitin ligase
(Zeng et al. 2004); SPL28 is a clathrin-associated adaptor
protein complex 1 medium subunit 1 (AP1M1), which is
important in the post-Golgi trafficking pathway (Qiao
et al. 2010). These findings indicate that numerous
proteins, with distinct functions in multiple signaling
pathways, are involved in the regulation of HR cell death
and disease resistance.
The rice lesion mimic, spotted leaf 5 (spl5), created by

γ-ray radiation, has spontaneous HR-like lesions on its
leaves (Iwata et al. 1978) and shows enhanced resistance
to rice blast and bacterial blight pathogens (Yin et al.
2000; Mizobuchi et al. 2002). Previously, we cloned the
SPL5 gene using a map-based cloning strategy and
showed that this gene encoded a novel protein that was
homologous with human splicing factor 3b subunit 3
(SF3b3) (Chen et al. 2012). SF3b3 is a subunit of the
SF3b multi-subunit complex, which is required, together
with SF3a, when binding U2 snRNA to the branch site
of pre-mRNA (Brosi et al. 1993; Das et al. 1999). There-
fore, it is likely that SPL5 post-transcriptionally regulates
cell death and resistance responses. According to our prote-
omic assay, many proteins involved in pre-mRNA splicing,
amino acid metabolism, photosynthesis, glycolysis, ROS
metabolism and defense responses were significantly up or
down-regulated in the spl5 mutant (Chen et al. 2013).
However, the molecular mechanisms controlling SPL5 and
its signaling pathway have not been fully investigated.
Serotonin (5-hydroxytryptamine) is a well-known

neurotransmitter in mammals and is widely distributed
in plants (Pelagio-Flores et al. 2011). Recently, serotonin
has been reported to activate intracellular defense
mechanisms during immune responses by the rice
lesion mimic mutant sl (Fujiwara et al. 2010). The sl
mutant did not produce serotonin in its leaves and
showed increased susceptibility to fungal infection, and
treating the sl mutant with serotonin suppressed fungal
growth; SL gene encodes a cytochrome P450 monooxy-
genase that has tryptamine 5-hydroxylase enzyme activ-
ity and catalyzes the conversion of tryptamine to
serotonin (Fujiwara et al. 2010). These results indicated
that activation of serotonin production is involved in
the establishment of effective disease defenses in rice.
In this study, we compared the expression profiles of

the spl5 mutant and the wild type by microarray analysis
and found that many candidate genes were involved in
defense response regulation. In particular, genes that
encoded enzymes for serotonin biosynthesis were signifi-
cantly up-regulated in the spl5 mutant. As a result, we
also detected the over-accumulation of serotonin and its
precursor, tryptophan, in the spl5 mutant. Previously, it
had been reported that tryptophan and serotonin play
direct roles in plant defense response regulation (Elaine
et al. 1995). Therefore, we suggest that SPL5 may nega-
tively regulate the biosynthesis of tryptophan and sero-
tonin, which, in turn, affects defense responses in rice.

Results
Transcriptome profiles in the spl5 mutant
To investigate the effect of spl5 mutation on the genes
expression in rice, we analyzed the transcriptome pro-
files in spl5-FL (few lesions) and spl5-ML (many lesions)
and WT leaves. The results revealed that 243 (176
up-regulated; 67 down-regulated) and 896 (445 up-
regulated; 451 down-regulated) genes were differentially
expressed in the spl5-FL and spl5-ML compared to the
WT, respectively (FC ≥ 3.0; Table 1; Additional file 1:
Table S1; Additional file 2: Table S2). According to GO
annotation, these genes could be classified into 20
different functional categories (Table 1). It was clear that
the known-functional categories with the large number of
differentially expressed genes were involved in defense
response and oxidation-reduction process both in the
spl5-FL and spl5-ML. Interestingly, among the differen-
tially expressed genes, 208 genes were found to be both
in spl5-FL and spl5-ML (Additional file 1: Table S1;
Additional file 2: Table S2), and these 208 common
genes may play important roles in SPL5 signaling and
function. Genes that were probably associated with the
spl5 phenotype are listed in Table 2.

Defense response
The expressions of many genes involved in the defense
response, such as Chitinase and β-1, 3-glucanases, were
induced in spl5 mutant (Table 2). Chitinase and β-1, 3-
glucanasesare are the important hydrolytic enzymes in
plants and show in vitro antifungal activity (Sela-Buurlage
et al. 1993; Hwang et al. 2007). In addition, genes en-
coding harpin/hypersensitive-induced response protein,
leucine-rich repeat (LRR) protein and protein phos-
phatase 2Cs (PP2Cs) were also induced in spl5 mutant
(Table 2). These genes have been shown to play critical
roles in the regulation of plant disease resistance (Choi
et al. 2011; Andi et al. 2001; Hu et al. 2009).



Table 1 Functional classification of differentially expressed genes identified by the microarray analysis

Function type spl5-FL spl5-ML aCommon

Up Down Up Down Up Down

Defense response 16 4 33 12 15 3

Oxidation-reduction process 13 6 33 35 12 5

Response to stress 5 1 14 5 4 1

Cellular amino acid metabolic
process

6 2 15 6 6 1

Cellular cell wall/membrance
organization

4 0 4 5 4 0

Hormone-mediated signaling
pathway

4 2 8 10 4 0

Fatty acid biosynthetic process 7 3 12 10 6 1

Development 3 0 7 8 3 0

Carbohydrate metabolic
process

4 1 16 18 4 1

Transport 6 3 17 21 6 2

ATP biosynthetic process 5 1 8 6 4 0

Photosynthesis 1 1 5 23 1 1

RNA/DNA 9 3 25 22 9 1

Apoptosis 1 0 2 0 1 0

Transcription factor 5 0 16 10 5 0

Kinase 11 5 32 14 10 3

Signal transduction 5 0 14 4 4 0

Protein modification process 6 0 15 15 6 0

Metal ion 2 2 3 7 2 2

Others 15 4 54 78 12 3

Unknow 48 29 112 142 43 23

Total 176 67 445 451 161 47
aDifferentially expressed genes which were both in spl5-FL and spl5-ML.
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ROS metabolism
ROS (O2

− and H2O2) are toxic metabolic products that
can effectively kill infected cells and activate the
defense response in plants, but the over-accumulated
ROS must be scavenged in time to avoid damage to
other cells (Lee et al. 1999). Three genes encoding
different ROS scavengers, Superoxide dismutase (SOD)
[Cu-Zn] 2, Peroxidase (POD) 12 and Aseorbate perox-
idase (APX) 7 were up-regulated in the spl5 mutant
(Table 2). SOD is the first enzyme in the detoxification
process which converts very harmful O2

− into less
reactive H2O2, then POD eliminate H2O2. APX is con-
sidered the most important H2O2 scavengers, using
ascorbate as the reducing agent (Kim et al. 2012).

Transcription factor
The WRKY transcription factor gene family have been
identified in a range of biological processes, and many
WRKY genes are transcriptionally regulated under
conditions of biotic and/or abiotic stress (Berri et al.
2009). Three WRKY genes, OsWRKY14, OsWRKY17
and OsWRKY55, were also induced in the spl5 mutant
(Table 2). OsWRKY14 was a transcription factor which
was also induced by environmental stresses and some
plant hormones, such as: JA, ABA and ET (Yang 2007).
OsWRKY17 can be induced under a number of adverse
stresses, such as drought, cold damage and high
temperature (Wang et al. 2012). OsWRKY55 was
strongly induced by the rice blast fungus and may be a
common component in the signal transduction pathway
of defense response (Zhang et al. 2008). These tran-
scription factors may follow in the signal transduction
of SPL5 for regulation of some candidate genes expres-
sions in rice.

Amino acid metabolism
Four genes involved in the biosynthesis of tryptophan
and serotonin were up-regulated in the spl5 mutant



Table 2 Differentially expressed genes that are likely to be associated with the spl5 phenotype according to the
microarray analysis

Function type aAccession bAnnotation cspl5-FL/WT dspl5-ML/WT

Defense response Os07g0251200 Harpin-induced 1 domain containing protein 22.04 25.34

Os10g0464000 Hypersensitive-induced response protein 17.80 44.48

Os11g0514500 Leucine-rich repeat-containing extracellular glycoprotein precursor 11.75 13.44

Os01g0944900 Beta-1,3-glucanase precursor 8.75 15.88

Os01g0687400 Chitinase 8.50 11.16

Os12g0127200 Harpin-induced 1 domain containing protein 8.23 9.83

Os04g0349700 Leucine-rich repeat, typical subtype containing protein 7.80 4.08

Os03g0207400 Protein phosphatase 2C-like 5.67 6.58

Os06g0136000 Hypersensitive-induced reaction protein 4 3.38 6.28

ROS metabolism Os07g0665200 Superoxide dismutase [Cu-Zn] 2 7.33 7.76

Os04g0434800 Aseorbate peroxidase 7 4.67 7.71

Os01g0962700 Peroxidase 12 precursor 4.58 4.21

Transcription factor Os01g0730700 WRKY transcription factor 14 11.77 18.74

Os03g0335200 WRKY transcription factor 17 5.66 7.45

Os03g0321700 WRKY transcription factor 55 5.67 10.10

Amino acid metabolism Os09g0255400 Indole-3-glycerol phosphate synthase 13.76 8.79

Os08g0140500 Tryptophan decarboxylase 10.19 9.25

Os07g0182100 Tryptophan synthase alpha chain 5.22 4.49

Os03g0718000 Anthranilate synthase beta chain 3.64 5.10
aGenBank Accession (http://www.ncbi.nlm.nih.gov/); bFunction annotation; Fold change of gene expression between spl5-FLc or spl5-MLd to WT using the average
normalized intensity of microarray.
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(Table 2). They are anthranilate synthase (AS), indole-3-
glycerolphosphate synthase (IGPS), tryptophan synthase
(TS) and tryptophan decarboxylase (TDC). It is known that
AS catalyzes chorismate to anthranilate, and IGPS catalyzes
anthranilate to indole-3-glycerol phosphate (IGP); then TS
catalyzes IGP to tryptophan,which forms serotonin catalyzed
by TDC. Recent research showed that OsWRKY14 was a
transcription factor forTS andTDC gene in the regulation of
the serotonin biosynthetic pathway in rice (Kang et al. 2011).
This genewas also up-regulated in spl5mutant (Table 2).

Serotonin biosynthesis was enhanced in the spl5 mutant
It is likely that the biosynthesis pathway of serotonin
was enhanced in the spl5 mutant. To verify the micro-
array results and to improve our hypothesis, we analyzed
the expression profiles of genes OsWRKY14, AS, IGPS,
TS and TDC by real-time PCR (Figure 1), and detected
the level of tryptophan and serotonin by High-perform-
ance liquid chromatography (HPLC) (Figure 2), in the
leaves of WT, spl5-NL (No lesion), spl5-FL and spl5-ML,
respectively.

OsWRKY14, AS, IGPS, TS, and TDC expressions by real-time
PCR
According to the results of real-time PCR (Figure 1),
these five genes of OsWRKY14 (Os01g0730700), AS
(Os03g0718000), IGPS (Os09g0255400), TS (Os07g0182
100) and TDC (Os08g0140500) were all significantly in-
duced in the spl5-FL and -ML compared to the WT,
and this result is consistent with the microarray data.
Even in the spl5-NL leaves with no lesions, the expres-
sions of the five genes were higher than that in WT.
However, except for OsWRKY14, the protein of AS,
IGPS, TS or TDC is not encoded by a single gene in
the rice genome. According to the NCBI database
(http://www.ncbi.nlm.nih.gov/), we found that there are
additional 3 AS, 2 IGPS, 8 TS and 1 TDC genes in rice
genome (Additional file 3: Table S3). The expression of
these 14 genes were also analyzed in the rice WT and
spl5 mutant by real-time PCR. As shown in Figure 1,
all additional IGPS (Os08g0320400, Os04g0467700)
and TDC (Os08g0140300) genes were induced in spl5
mutant (Figure 1), but only 1 out 3 AS and 4 out of
8 TS genes were significantly induced in the spl5 mu-
tant, compared to the WT respectively (Additional file 4:
Figure S1).

Serotonin and tryptophan level analysis by HPLC
The serotonin and its precursor tryptophan levels were
also determined in spl5-NL, spl5-FL, spl5-ML and WT
by HPLC. Figure 2 shows that the tryptophan levels
significantly increased in spl5 leaves, including spl5-NL
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(See figure on previous page.)
Figure 1 Expressions of OsWRKY14, AS, IGPS, TS and TDC by real-time PCR analysis. The OsWRKY14, AS (anthranilate synthase), IGPS (indole-3-
glycerolphosphate synthase), TS (tryptophan synthase) and TDC (tryptophan decarboxylase) genes expressions are shown for the WT leaves
and the spl5 leaves with different degrees of lesion development: NL (no lesions), FL (few lesions) and ML (many lesions). The accession number of
gene is from the NCBI database (http://www.ncbi.nlm.nih.gov/). The significance of expression compared to WT with the P value less than 0.05 and
0.01 are marked by * and **, respectively.
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where there were no lesions. Except in spl5-NL, sero-
tonin levels also significantly increased in spl5-FL and
-ML compared to the WT, and it is likely that the
catalytic reaction from tryptophan to serotonin was not
actively increased in spl5-NL. This result was consistent
with the induced or enhanced expressions of AS, IGPS
and TS genes in the tryptophan and serotonin biosyn-
thetic pathway, and the lesion mimic phenotype of spl5
mutant was positive correlated with the content of
serotonin.
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Figure 2 In vivo tryptophan and serotonin levels by HPLC analysis. The tryp
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are marked by * and **, respectively.
Discussion and conclusions
Lesion mimic mutants, which display HR-like cell death
and enhance disease resistance, are useful genetic tools
for study on the molecular mechanisms of HR and dis-
ease resistance in plants. Though many lesion mimic
genes have been cloned in rice (Yamanouchi et al. 2002;
Zeng et al. 2004; Kim et al. 2009; Qiao et al. 2010; Shen
et al. 2011; Jerwin et al. 2012), the signal pathways of
most these genes have not been reported up till now.
Here, in order to reveal the signal pathway of SPL5 gene
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Figure 3 SL and OsPR1a expressions by real-time PCR analysis. The
SL and OsPR1a gene expressions are shown for the spl5 leaf parts
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expression compared to WT with the P value less than 0.05 and 0.01
are marked by * and **, respectively.
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in regulation of disease resistance, we analyzed the tran-
scriptional profiling of spl5 mutant and WT using the
microarray. Totally, 243 and 896 up- or down-regulated
genes (FC ≥ 3.0) were identified from spl5-FL and spl5-
ML, respectively (Additional file 1: Table S1; Additional
file 2: Table S2). Among them, there were many genes
involved in defense response (Chitinase, β-1, 3-glucanases),
ROS metabolism (SOD, POD and APX) or transcription
regulation in stress response (OsWRKY14, OsWRKY17,
OsWRKY55). We speculated that these may involve in
the SPL5 mediated resistance in rice.
We also have clearly demonstrated that the serotonin

biosynthetic pathway was up-regulated in the spl5
mutant. Firstly, the expression of genes involved in this
pathway: AS, IGPS, TS and TDC were significantly in-
duced in spl5 (Figure 1) and secondly, the tryptophan and
serotonin concentration increased in the spl5 leaves
(Figure 2). Interestingly, another rice lesion-mimic mutant
sl was from the mutation of SL gene, which encodes a
cytochrome P450 monooxygenase and catalyzes biosyn-
thesis of serotonin (Fujiwara et al. 2010). Therefore, the
expression of SL gene was examined in spl5 mutant, and
results showed this gene also significantly induced in the
spl5 mutant compared to the WT (Figure 3), suggesting
that SL may contribute to the increased accumulation of
serotonin in spl5 mutant plants. It has been reported that
the tryptophan pathway plays a direct role in regulating
plant defense responses, plant-insect interactions and
plant development (Elaine et al. 1995). Serotonin is one of
the most important secondary metabolites from trypto-
phan, and has been implicated in several important
physiological and developmental functions, such as senes-
cence, flowering and seed germination (Kang et al. 2009;
Murch et al. 2001; Ishihara et al. 2008). Recent research
showed that in infected rice leaves, serotonin can serve as
a substrate for peroxidase in the presence of hydrogen
peroxide, forming a complex mixture of oligomerics that
function as a physical barrier against the spread of patho-
gen infections (Ishihara et al. 2011). Treating the slmutant
with serotonin it can effectively suppress the growth
of fungal, and activate the expression of some resist-
ance genes, such as probenazol 1 (PBZ1), phenylalanine
ammonia-lyase 1 (PAL1), chitinase 1 (Cht1) and chitinase
3 (Cht3) (Fujiwara et al. 2010). In our previous research,
we have also proved that the OsChib2a was increased in
spl5 mutant (Chen et al. 2013). In order to further
confirm whether the defense responses were activated in
spl5 mutant, the expression of OsPR1a, a marker gene of
systemic acquired resistance (Durrant and Dong, 2004),
was tested by our Real-time PCR (Figure 3). The result
showed that the OsPR1a was also induced in spl5 mutant.
So, it is likely that the serotonin may play a key role in
the defense responses of spl5 mutant. In addition, the
microarray data analysis showed that OsWRKY14, a key
transcription factor for serotonin biosynthesis, was also
induced in the spl5 mutant. Based on our experimental
results, we have proposed a model for the serotonin
biosynthetic signaling pathway in rice that is mediated
by the SPL5 gene (Figure 4). In this model, the SPL5
gene may act as a negative regulatory factor activating
the serotonin metabolic pathway, which was mediated
by OsWRKY14. The accumulation of serotonin may
lead to pathogen resistance in rice. However, we could
not confirm if the SPL5 gene mutation affects other
biological pathways that trigger similar phenotypes. We
have shown that the SPL5 gene encodes a SF3b3 pro-
tein that presumably has a role in the pre-mRNA spli-
cing process (Chen et al. 2012). So far, there have been
no reports about SF3b3 being involved in rice defense
responses. The spl5 mutant is a useful tool that can be
used to study the mechanisms behind SF3b3 defense
regulation in plants and to apply in molecular breeding
for crop disease resistance.
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Methods
Plant materials
Rice seeds from the spl5 mutant and its wild-type (WT)
control, Zhefu802 (a near-isogenic line of spl5), were germi-
nated in an incubator at 28°C, transferred to the nutrient
solution used by Yoshida (Yoshida et al. 1976), and then
cultivated in a growth chamber at 28/24°C (12 h day/12 h
night). The nutrient solution was maintained at pH 5.6 and
refreshed every 5 d. At 60 days old, the fully developed
leaves were collected from each spl5 mutant and WT plant.
Further, the leaf blades of spl5 mutant were split into three
groups, based on the degree of lesion formation: no lesion
(NL), leaf area without any lesions; few lesions (FL), leaf
area with 10–20% lesions and many lesions (ML), leaf area
with 70–80% lesions as the method described by Chen
(Chen et al. 2013). All the leaf tissues were immediately
frozen in liquid nitrogen and stored at −80°C.

RNA extraction
Total RNAs of leaves were extracted using TRIzol Reagent
(Life technologies, USA) following the manufacturer’s
instructions, and further purified by RNeasy mini kit
(QIAGEN, Germany) and RNase-Free DNase Set (QIAGEN).

Microarray assay
RNAs Samples were analyzed using Affymetrix (USA)
rice 44 k gene chips with two biological replicates by the
Shanghai Biotechnology Co. Ltd. China. The data of
this microarray was deposited in GEO database (http://
www.ncbi.nlm.nih.gov/geo/), and the accession number
is GSE61952. The signal intensity emitted by each
probe on the microarray was scanned using a GeneChip®
Scanner 3000 and analyzed with Command Console
Software 3.1 using the default settings. The raw data for
all the arrays were normalized by the MAS 5.0 algorithm
using Gene Spring Software 11.0. Genes with a fold
change (FC) of ≥ 3.0 between the spl5 mutant and the
WT were identified as the differential expression genes,
but those which have poor microarray signals with the
Flag value of A (absent) or with the normalized inten-
sity ≤ 500 were manually eliminated. Gene function pre-
diction was carried out using the NCBI database (http://
www.ncbi.nlm.nih.gov/gene). The Gene Ontology data-
base (http://www.geneontology.org/) was used for gene
functional classification.
Real-time PCR
The leaf total RNAs were isolated by TRIzol Reagent
and treated with RNase-free DNase I (Promega, USA) to
eliminate any contamination by genomic DNA. The
first-strand synthesis of the cDNAs was carried out by
M-MLV Reverse Transcriptase (Promega, USA) accord-
ing to the manufacturer’s instructions. Real-time PCR
was performed by a Step One™ Real-Time PCR System

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
http://www.geneontology.org/


Table 3 Gene-specific primers used for the real-time PCR

Gene aAccession Forward primer (5′-3′) Reverse primer (5′-3′)

AS Os03g0718000 GGCTCCTCCCCAAGATCCAGTCC TGCGTTTTCACCTTCCACCACAG

IGPS Os09g0255400 CGCCGCCTCTTCCTCTCTC GGACTTGCCGCTCTCCCAC

TS Os07g0182100 AGCTGTGGCTGTTGGGTTCGGTAT GCTTCTTCAATCCTTCTTCGGGTG

TDC Os08g0140500 TCAAGAACCACGCCAGCGACTC GTAGGTGCGCATGACCATCCAG

OsWRKY14 Os01g0730700 AGCACAACCACTCCGCCAC CCTCCTCCCATCTCCAGCC

OsPR1a Os07g0129200 TATGCTATGCTACGTGTTTATGC CACTAAGCAAATACGGCTGACA
aGenBank Accession (http://www.ncbi.nlm.nih.gov/).
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(Applied Biosystems, USA) using the Fast SYBR Green
Master Mix reagent (Applied Biosystems). The thermal
cycle used was as follows: 95°C for 20 s; 40 cycles of
95°C for 3 s and 60°C for 30 s. A rice housekeeping
gene Actin (GenBank accession: X16280) was used for
the standardization control, and the primer pair was
5′-TGGCATCTCTCAGCACATTCC-3′ and 5′-TGCA
CAATG GATGGGTCAGA-3′. The gene-specific primers
for the candidate genes used in the real-time PCR ana-
lysis are listed in Table 3 and Additional file 3: Table S3.
Each sample was independently tested by three times.
Finally, the real-time PCR data was analyzed using the
delta-delta Ct method (Livak and Schmittgen 2001).

HPLC analysis
For each sample, 100 mg leaf tissue was ground with
liquid nitrogen into a powder and soaked in 2 ml 100%
methanol. The homogenates were centrifuged at 10,000 × g
for 10 min and the supernatant was filtered through a syr-
inge with a 0.2 μm cellulose acetate membrane filter (Pall,
USA). Then the filtrate was evaporated to dryness under
vacuum and dissolved in 500 μl 50% methanol. The final
sample was analyzed by reversed-phase HPLC (Waters,
USA) so that the tryptophan and serotonin contents could
be quantified. The samples were separated on an XTerra
RP C18 column (250 × 4.6 mm, 5 μm, Waters) with an
isocratic elution of 50% methanol in water containing 0.3%
trifluoroacetic acid at a flow rate of 0.4 ml/min. A UV
wavelength of 280 nm was used for detection. The stand-
ard samples for tryptophan and serotonin were made by
Sigma (USA).

Additional files

Additional file 1: Table S1. Differentially expressed genes between
spl5-FL with WT (FC ≥ 3.0).

Additional file 2: Table S2. Differentially expressed genes between
spl5-ML with WT (FC ≥ 3.0).

Additional file 3: Table S3. Gene-specific primers of additional AS, IGPS,
TS and TDC genes used for real-time PCR.

Additional file 4: Figure S1. Gene expressions of additional AS and TS
by real-time PCR.
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