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Abstract

Background: Photorespiration, a highly wasteful process of energy dissipation, depresses the productivity of C3
plants such as rice (Oryza sativa) under dry and hot conditions. Thus, it is highly required to understand the cellular
physiology and relevant metabolic states under photorespiration using systems approaches, thereby devising
strategies for improving rice production.

Findings: In silico model-driven gene deletion analysis was performed on photorespiring leaf cells under ambient
and stressed environmental conditions using our central metabolic network of rice cells. As a result, we identified a
number of essential genes for the cell growth across various functional pathways such as photorespiratory cycle,
Calvin cycle, GS-GOGAT cycle and sucrose metabolism as well as certain inter-compartmental transporters, which
are mostly in good agreement with previous experiments. Synthetic lethal (SL) screening was also performed to
identify the pair of non-essential genes whose simultaneous deletion become lethal, revealing the existence of
more than 220 pairs of SLs on rice central metabolism.

Conclusions: The gene deletion and synthetic lethal analyses highlighted the rigid nature of rice photosynthetic
pathways and characterized functional interactions between central metabolic genes, respectively. The biological
roles of such reported essential genes should be further explored to better understand the rice photorespiration in
future.
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Findings
In silico model driven analysis of rice photorespiration
Drought stress is one of the major environmental fac-
tors affecting the growth and development of rice due
to high levels of photorespiration. Thus, in order to in-
vestigate how this abiotic stress affects the rice physi-
ology via metabolic adaptations, it is essential to
characterize the cellular behavior during photorespi-
ration. The process is initiated by the oxygenase side
reaction of the bifunctional ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO), producing equimo-
lar amounts of 3-phosphoglycerate (3-PGA) and un-
wanted 2-phosphoglycolate (2-PG) for each molecule
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reproduction in any medium, provided the orig
of O2 fixed (Jordan and Ogren 1984). It is followed by
the salvage of 2-PG into 3-PGA via photorespiratory
pathway, requiring significant amount of cellular en-
ergy, i.e. ATP, in C3 plants such as rice (Wingler et al.
2000). The ratio of carboxylase/oxygenase reactions (VC/
VO) is three under normal conditions (Heldt and Piechulla
2011), however, this ratio can drop even below one and
may reach the compensation point (VC/VO = 0.5) at which
the net CO2 uptake rate becomes zero under drought con-
ditions (Heldt and Piechulla 2011). Therefore, the control
of photorespiration has always been a main focus for im-
proving rice productivity.
To date, a number of mutational studies have been

performed in many C3 plants, mainly in Arabidopsis and
barley, to understand the photorespiratory pathway, but
identified only a handful of essential enzymes including
serine-glyoxylate aminotransferase (SGAT), glycine decarb-
oxylase (GDC), ferredoxin-dependent glutamate synthase
(Fd-GOGAT) and glutamine synthase (GS) (Foyer et al.
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Figure 1 Distribution of the essential genes across rice central
metabolism in photorespiring rice leaf cells under normal (VC/
VO = 3) condition. The genes are classified as essential (green), sub
essential (blue) and non-essential (green) upon the gene deletion.
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2009) due to the limitations in mutant isolation process
and the possible involvement of alternate pathways and
genetic redundancy of the relevant enzymes (Reumann
2004; Timm et al. 2008). Thus, it is highly required to ex-
ploit more systematic approaches for improving our under-
standing of the rice photorespiration. In this regard, in
silico metabolic modeling and analysis allow us to predict
the cellular behaviour and metabolic states globally upon
various environmental/genetic changes (Lewis et al. 2012).
For example, in silico knock-out mutant studies and com-
parative analysis have provided the conditionally essential
gene sets and corresponding functional modules under
various growth conditions in E. coli and S. cerevisiae (Segre
et al. 2005; Joyce et al. 2006). Similarly, in this work, we aim
to elucidate the rice photorespiration under ambient and
drought conditions by identifying essential genes using our
recently reconstructed rice metabolic/regulatory network
model which was validated with cell culture experiments
(Lakshmanan et al. 2013).

Identification of essential genes in rice photorespiration
Both normal (VC/VO = 3) and stressed (VC/VO = 1) con-
ditions during the rice photorespiration were simulated
to evaluate the gene essentiality for cell growth by
resorting to constraints-based flux analysis (see Method
in Additional file 1). The results revealed about 60% of
the reactions in the model were non-essential under
both conditions while 25% were completely essential
and distributed across various pathways of rice central
metabolism as illustrated in Figure 1. Most of the essen-
tial genes were identified in photosynthetic pathways
such as photorespiratory cycle (10 genes) and Calvin
cycle (7 genes), indicating the rigidity of CO2 fixing
mechanism in plants. Generally, these observations are
in good agreement with the existing experimental evi-
dences available on other plants such as Arabidopsis,
pea, barley and maize (Table 1). The first enzyme of the
photorespiratory pathway, phosphoglycolate phosphatase
(PGLP), metabolizes the toxic 2-PG which may accumu-
late as a result of ribulose-1,5-bisphosphate (RuBP) oxy-
genase activity. If the 2-PG is not scavenged, it can
inhibit the key glycolytic enzyme, triose phosphate
isomerase (TPI), thereby disrupting photosynthesis
even under ambient air (Somerville and Ogren 1979).
Likewise, other photorespiratory enzymes such as glycolate
oxidase (GOX) and SGAT are also essential for cell growth
under both normal and stressed conditions by degrading
the toxic metabolites, glycolate and glyoxylate, respectively
(Zelitch et al. 2009; Wingler et al. 2000). Interestingly,
serine hydroxymethyltransferase (mitochondrial) (SHM1:
EC. 2.1.2.1), on the other hand, was found to be essential
only under dry and hot conditions, which is highly consist-
ent with the experiments by Voll et al. (2006), who
reported the conditional viability of the SHM1 mutant of
Arabidopsis thaliana. In order to further verify the re-
sults in rice, such predicted genes on Calvin cycle,
photorespiratory pathway and GS-GOGAT cycle were
compared with the essential genes of Arabidopsis and
maize (Wang et al. 2012). Again, most of essential en-
zymes are common across all three plants, except
PGLP with supporting experiments for our prediction
(Somerville and Ogren 1979).
In addition to essential metabolic genes, we also analysed

the dispensability of inter-compartmental metabolite trans-
porters since the mechanism of photorespiration is quite
intricate, involving three major organelles, chloroplast,
mitochondrion and peroxisome. In this regard, we identi-
fied a number of essential inter-compartmental trans-
porters including mitochondrial and plastidic malate/



Table 1 Comparison of essential genes/reactions in rice, Arabidopsis and maize during photorespiration

Enzyme EC
number

Pathway Rice (C3) Arabidopsis (C3) Maize (C4) References

(This study) Wang et al. (2012)

RuBisCO 4.1.1.39 Calvin cycle √ √ √ Sicher and Bunce (1997)

PRK 2.7.1.19 Calvin cycle √ √ √ Moll and Levine (1970)

RPE 5.3.1.6 Calvin cycle √ √ √

RPI 5.1.3.1 Calvin cycle √ √ √

TKT 2.2.1.1 Calvin cycle √ √ √

SBPase 3.1.3.37 Calvin cycle √ NA NA Liu et al. (2012)

PLGP 3.1.3.18 Photorespiratory cycle √ X X Somerville and Ogren (1979)

SHM 2.1.2.1 Photorespiratory cycle √* NA NA Voll et al. (2006)

GLYK 2.7.1.31 Photorespiratory cycle √ NA NA Boldt et al. (2005)

GDC Photorespiratory cycle √ NA NA Wingler et al. (1997)

Catalase 1.11.1.6 Photorespiratory cycle √ NA NA

GAL 6.3.1.2 Photorespiratory cycle √ NA NA

SGAT 2.6.1.45 Photorespiratory cycle √ NA NA Wingler et al. (1999)

GOX 1.1.3.15 Photorespiratory cycle √ √ √ Zelitch et al. (2009)

GS 4.2.1.2 GS-GOGAT cycle √ NA NA Blackwell et al. (1987)

Fd-GOGAT 3.1.3.24 GS-GOGAT cycle √ NA NA Somerville and Ogren (1986)

GLBE 2.4.1.18 Starch biosynthesis √ √ √

PPC 4.1.1.31 X X √

√ – essential gene; X – non-essential gene; NA– essentiality not reported/investigated; * – essential only under drought conditions.
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fumarate/succinate redox shuttles in both conditions. Malate
transporters play an essential role in transmitting the excess
redox cofactors from plastid to mitochondria for their even-
tual utilization in oxidative phosphorylation while plastidic
glycolate/glycerate transporter (PLGG) was reported as the
core photorespiratory transporter (Pick et al. 2013). Add-
itionally, a few unique mitochondrial transporters such as
serine translocator, alpha-ketoglutarate/malate and glutam-
ate/malate redox shuttles were identified to be essential only
under stressed conditions, emphasizing their crucial roles in
transporting the high fluxes of photorespiratory intermedi-
ates such as glycolate, glycerate, glutamate, oxoglutarate, gly-
cine, and serine (Reumann and Weber 2006) (see Additional
file 2 for the entire list of essential transporters).
From our analysis, it is evident that most of the photo-

respiratory enzymes including PGLP, GOX and SGAT are
required for degrading the toxic metabolites and synthesiz-
ing signaling compounds such as H2O2 and glutathione
(Wingler et al. 2000). Therefore, more carbohydrates and
energy production via Calvin cycle toward the enhanced
crop productivity can be achieved by increasing CO2 con-
centration around RuBisCO rather than blocking carbon
fluxes through photorespiratory pathway.

Synthetic lethality screening of non-essential gene pairs
in rice photorespiration
Besides identifying essential genes/reactions, we also
newly screened the synthetic lethal (SL) gene pairs of
rice central metabolism during photorespiration under nor-
mal and stressed conditions to better characterize the func-
tional interactions between the non-essential genes (see
Methods in Additional file 1). Note that SLs are pair of non-
essential genes whose simultaneous removal can lead to zero
growth (Suthers et al. 2009). Such lethality arises due to
several reasons including interchangeable gene products
with respect to an essential function (isozymes/isoforms),
their existence in the same essential pathway or sharing of
complementary essential function(s) (Suthers et al. 2009).
Here, it should be noted that we excluded the inter-
compartmental transporters during SL screening since the
deletion of most of the transporters coupled with metabolic
genes resulted in no growth. A total of 226 and 229 SLs
were identified in the normal and stressed conditions,
respectively. Interestingly, of the total 226 SLs the
ferredoxin-NADP+ reductase (FNR) in GS-GOGAT cycle,
and the mitochondrial ATP synthase (ATPS) in oxidative
phosphorylation were paired with 83 and 82 other genes of
rice central metabolism, respectively. FNR is involved in
reassimilating the ammonia released during photorespir-
ation via Fd-GOGAT and maintaining the redox balance of
plastids (Foyer et al. 2009) whereas ATPS is utilized to gen-
erate necessary energy for the cell growth via mitochondrial
respiration (Lakshmanan et al. 2013). Several SLs also
contained the isoforms of same enzymes across different
compartments. Such examples include the cytosolic and
plastidic isoforms of enolase, phosphoglycerate kinase,
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glyceraldehyde-3-phosphate dehydrogenase and trio-
sephosphate isomerase, and the cytosolic and mito-
chondrial isoforms of malate dehydrogenase (see
Additional file 2 for the entire list of SLs).

Concluding remarks
In the present study, we reported the essential genes and
synthetic lethal gene pairs of rice central metabolism
during photorespiration using in silico model-driven
analysis. Our model simulations have unraveled several
new essential genes of the photorespiratory metabolism,
in addition to those which are reported earlier. However,
it should be noted that gene essentiality results are
condition-specific and sensitive to the model complete-
ness. Therefore, the list of essential genes presented in
the current study should be further confirmed with en-
hanced model predictability and subsequent experimen-
tal validations.

Additional files

Additional file 1: Details of the methods used in the study.

Additional file 2: List of essential inter-compartmental transporters
and list of synthetic lethal gene pairs of rice central metabolism
under normal and stressed photorespiration.
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