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Accumulation of starch in Zn-deficient rice
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Abstract

Zinc (Zn) is an essential micronutrient for living organisms, and understanding the molecular mechanisms of Zn
deficiency may help to develop strategies to mitigate this problem. Microarray analysis of Zn deficient rice revealed
the up-regulation of several genes involved in Zn transport. Moreover many genes involved in starch synthesis/
transport were up-regulated by Zn deficiency in rice roots and shoots. Furthermore, starch granules were detected
mainly in the cortical cells of these tissues. The gene encoding inactive RNase was much more highly transcribed
than those encoding active RNases. Although the level of RNA degradation in a crude extract of Zn-deficient shoots
was higher than that of Zn-sufficient shoots, addition of Zn significantly reduced the level of degradation. These
results indicate that RNA degradation could be regulated by the amount of Zn in the cell, and that the tolerance of
rice plants to low levels of Zn is promoted by the accumulation of starch and inactive RNase.
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Background

Zinc (Zn) is an essential micronutrient for almost all organ-
isms, and its deficiency represents a serious nutritional
problem in humans and plants. Zn is a non redox active
element and serves as a cofactor for large number of
enzymes involved in DNA transcription, protein, nucleic
acid, carbohydrate, and lipid metabolism (Ishimaru et al.
2011; Broadley et al. 2007; Marschner 1995). For example,
DNA and RNA polymerases require Zn as a cofactor, and
Zn is also essential for cell division. Indeed, Zn concentra-
tion in plant meristems is much higher than in other tis-
sues (Kitagishi & Obata 1986). Zn also plays a role in the
structural stability of certain proteins, such as those con-
taining Zn-finger domains, a dominant feature of many
transcription factors. Genomic research in Arabidopsis
revealed that roughly 22% of transcription factors contain a
Zn-finger domain (Riechmann et al. 2000); therefore, Zn
may be important in regulating gene expression.

Many regions of the world, particularly those with calcar-
eous soils, lack sufficient Zn, resulting in poor plant growth.
Therefore, the mechanism for tolerance to Zn deficiency
should be elucidated to mitigate Zn deficiency. Several
mechanisms have been investigated to clarify the
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physiological basis of differential Zn efficiency among wheat
genotypes. For example, cultivars tolerant to Zn deficiency
secrete higher amounts of mugineic acid family phytosider-
ophores (MAs) than intolerant cultivars (Cakmak et al.
1994; Walter et al. 1994; Zhang et al. 1989; Suzuki et al.
2006; Cakmak et al. 1996). MAs are synthesized from L-
methionine (Mori & Nishizawa 1987; Shojima et al. 1990;
Ma et al. 1995; Ma et al. 1999). Nicotianamine (NA) syn-
thase (NAS) transforms three molecules of S-adenosyl-L-
methionine to one molecule of NA, and NA aminotransfer-
ase (NAAT) catalyzes the amino transfer of NA. The keto
form is subsequently reduced to 2’'-deoxymugineic acid
(DMA) by DMA synthase (DMAS) (Bashir et al. 2006;
Bashir & Nishizawa 2006; Bashir et al. 2010). Zn-DMA, is
suggested to be preferred over Zn>* for uptake in barley
roots (Suzuki et al. 2006), while rice roots absorb less Zn-
DMA compared to Zn** (Suzuki et al. 2008). Similarly the
secretion of MAs increases in Zn deficient barley, while it
decreases in rice (Suzuki et al. 2006; Suzuki et al. 2008).
Despite this, Zn-DMA is suggested to be the preferred form
for the long distance transport in rice (Suzuki et al. 2008).
Difference in DMA secretion is suggested to increase toler-
ance in rice (Widodo et al. 2010). Moreover, a modelling
study also proposed a strong correlation between DMA se-
cretion and rooting density, and suggested a role of DMA
for Zn absorption in rice (Ptashnyk et al. 2011). The identi-
fication of Zn-NA complexes in rice phloem sap also
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suggests that NA performs a significant role in Zn transport
(Nishiyama et al. 2012). Zn uptake by roots, and transloca-
tion within the plant, are associated with Zn efficiency
(Rengel & Graham 1996), while the availability of Zn at the
cellular level is also suggested to be related to Zn efficiency
(Cakmak et al. 1997). Moreover the expression level or ac-
tivity of enzymes requiring Zn is shown to be different be-
tween  Zn-efficient and  Zn-inefficient  cultivars
(Hacisalihoglu et al. 2003). Partitioning of carbohydrates
also shows correlation with tolerance to Zn-deficiency
stress (Pearson & Rengel 1997). Rice cultivars differing in
Zn efficiency have been used for physiological and genetic
analyses of tolerance to Zn deficiency (Gao et al. 2005; Haji-
boland et al. 2005; Hoffland et al. 2006; Wissuwa et al.
2006). Among graminaceous plants, rice is highly sensitive
to Zn-deficient stress; thus, we investigated the physio-
logical change and gene expression pattern in rice during
Zn deficiency. Profiling of the genes involved in Zn-defi-
cient stress is critical to elucidate the mechanisms of toler-
ance to or damage by Zn deficiency. We performed a
microarray analysis with Zn-deficient and Zn-sufficient rice
to identify genes whose expression increases in response to
Zn deficiency. Based on our combined expression and
phenotypic analyses, we demonstrated that besides up-regu-
lation of genes involved in Zn uptake and transport, Zn de-
ficiency enhances starch accumulation both in roots and
shoots, and that Zn deficiency induces the expression of a
gene encoding putative inactive RNase, which may function
as vegetative storage protein. Further, the level of RNA deg-
radation was increased by Zn deficiency.

Results

Up-regulation of genes involved in Zn transport
Microarray analysis revealed that the genes involved in
Zn uptake and transport were up-regulated, both in
roots and shoots of Zn deficient rice. The expression of
OsNAS1 particularly increased in rice shoots (Table 1).
OsNASI1 is reported to be up-regulated by iron deficiency
in root and shoot tissue (Inoue et al. 2003; Bashir et al.
2011; Ishimaru et al. 2009). Moreover, the expression of
OsNAS3 was also upregulated in root and shoot tissue.
The expression of OsNAS3 is not regulated by Fe defi-
ciency and is reported to be up-regulated by Zn defi-
ciency (Suzuki et al. 2008). As NA was not detected in
Zn deficient rice shoot, the NA catalyzed by OsNAS3
may be transformed to DMA (Suzuki et al. 2008). The
up-regulation of OsNAAT1 supports this hypothesis. Be-
sides this the expression of Zn transporters, OsZIP4,
OsZIP5 and OsZIP8 increased significantly in Zn defi-
cient roots and shoots, while the expression of OsZIP7
increased in shoot tissue (Table 1). OsZIP4 and OsZIPS
are plasma membrane Zn transporters induced by Zn
deficiency (Lee et al. 2010; Yang et al. 2009; Ishimaru
et al. 2005). Moreover, the expression of OsHMAI was
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Table 1 Microarray analysis of genes involved in Zn
transport

Accession Gene Ratio (-Zn/+Zn)

No. Root Shoot
AK112069 OsNAST 09+04 178+02
AK112011 OsNAS2 09+04 12+0.1
AKO070656 OsNAS3 41+£04 27+04
AK108576 OsNAATT 106£1.0 6.0+06
AK107681 OsIRT1 1.0+0.1 1.0+0.1
AY302058 OsZIP1 1.0£0.1 1.2+£00
AK121551 OsZIP2 11+£02 12+£02
AK069804 OsZIP3 0.7+03 1.1+£02
AK105258 OsZIP4 11.2+0.1 552+41
AK070864 OsZIP5 38+03 8.1+03
AK103730 OsZIP6 1.1+£01 12+0.1
AK071272 OszIP7 1.8+0.1 23+00
AY327038 OsZIP8 6.0+03 89+13
0s05g0472400 OsZIP9 15+£06 1.0+0.1
050690566300 OsZIP10 1.0+0.1 1.0+00
050590198400 Zinc transporter 23+00 58+0.1
050690690700 OsHMAT 1.7+05 74+20

also induced by Zn deficiency in shoot tissue. OsHMA1
is supposed to be involved in Zn transport (Williams &
Mills 2005).

Starch accumulation in Zn-deficient roots and shoots
As shown in Table 2, genes encoding starch synthase,
ADP-glucose pyrophosphorylase (AGPase) large subunit,
AGPase small subunit, a-1,4-glucan branching enzyme,
and phosphoglucomutase, which are thought to be
involved in starch metabolism, were up-regulated by Zn
deficiency. Sucrose synthase, which reversibly converts su-
crose to ADP-glucose, was up-regulated in Zn-deficient
shoots and slightly up-regulated in roots, while a-1,4-glu-
can phosphorylase, which catalyzes the phospholysis of a
linear glucan chain to reversibly yield glucose 1-phosphate
(Smith et al. 2003), was also up-regulated. Although mul-
tiple pathways may exist for starch synthesis (Baroja-Fer-
néndez et al. 2004), the above enzymes may be sufficient
for starch synthesis. Moreover, several genes involved in
sugar transporter were up-regulated especially in shoots.
The expression of these genes increased more significantly,
when plants were subjected to Zn deficiency and analysed
by 22 K microarray analysis (Additional file 1: Table S1).
The starch content was higher in both roots and
shoots grown under Zn-deficient conditions (Figure 1a),
corresponding to the gene expression pattern revealed by
our microarray analysis. Iodine—starch reaction staining
revealed starch accumulation in Zn-deficient roots, but
not in control roots or Fe-deficient roots (Figure 1b—d).
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Table 2 Microarray analysis of genes involved in
carbohydrate metabolism and transport in rice

Accession Putative gene identification Ratio (—-Zn/+Zn)
No. Root Shoot
Starch metabolism and transport

AK102058 Starch synthase 35+04 25+08
AK100910 AGPase large subunit 24+02 27+03
AK073146 AGPase small subunit 20+£04 22+02
AK068920 a-1,4-glucan branching enzyme 16402 29+04
AK065121 a-1,4-glucan branching enzyme 14402 21402
AK064893 Phosphoglucomtase 37+03 1.8+00
AK099406 Sucrose synthase 1.5+0.1 1.9+0.1
AK063766 a-1,4-glucan phosphorylase 1.5+0.1 22+02
AK103367 a-1,4-glucan phosphorylase 22+0.1 18+02
AK073216 Sorbitol transporter 14401 27+02
AK073967 Hexose transporter 17+03 1.8+0.3
AK073216 Sugar transporter 14+0.1 27+02
AK060577 Glucose-6-phosphate translocator ~ 1.3+0.2 21402
AK059423 Sugar transporter 08=+0.1 2004
AK069202 Glucose transporter 1.1+0.1 22+0.1
AK103915 Sugar transporter protein 24405 20+0.1

In Zn-deficient roots, several starch granules were
detected in the cortex, especially in the cells close to the
sclerenchyma and endodermis (Figure 1d, f, g), and add-
itional granules were observed in the pericycle (Figure 1e).
In shoots, starch granules were mainly found in the meso-
phyll cells of the control plants (Figure 1h); however, in
Zn-deficient shoots, the location of the starch granules
was different among the leaves within a plant. Starch accu-
mulated in the mesophyll cells of the youngest mature
leaves of Zn-deficient rice (Figure 1i). When the youngest
leaf was immature, starch accumulated in the bundle
sheath cells of older leaves (Figure 1j). At the large vein of
old leaves, starch granules were observed both in the
mesophyll cells and in the bundle sheath cells (Figure 1Kk).

Zn-deficient rice strongly expresses inactive RNase

Among the 27,800 genes analyzed, Os09g0537700
(AK061438; OsRNS4), which is predicted to encode S-like
RNase, showed the highest induction ratio in roots
(Table 3). This gene was also up-regulated in Zn-deficient
shoots. Other genes encoded putative RNases, were not
significantly up-regulated by Zn deficiency. In rice eight
genes for S-like RNase have been described (MacIntosh
et al. 2010) and among them only six were included in our
microarray experiment. In addition, the transcript levels of
AKO061438 in Zn-deficient shoots were much higher than
those of the other RNases. Northern blot analysis revealed
that the expression of two S-like RNases increased in Zn-
deficient shoots, but not in Fe-deficient or Cu-deficient
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shoots (Figure 2); Mn deficiency slightly induced expres-
sion. Although the expression ratio of AK061438 in Zn-
deficient roots was very high, the transcript level in roots
was much lower than in shoots. Northern blot analysis as
well as 22 K microarray analysis of rice plants indicated
that expression of OsRNS5 also increases by Zn deficiency
(Figure 2 & Additional file 1: Table S2).

An alignment of the amino acid sequences of the RNases
is shown in Figure 3a. All of the RNases contain eight con-
served cysteine residues involved in the three-dimensional
formation of RNase (Rabijns et al. 2002); however, the
amino acid sequences encoded by AK061438 and
AK109411 lack two histidine residues (replaced by Lys66
and Tyr125 in AK061438, and by Ala67 and Serl25 in
AK109411) that are essential for RNA degradation (Kuri-
hara et al. 1996). In addition, the glutamate residue, which
is also essential for RNA degradation, is not conserved in
AK109411 (replaced by Alal21). These histidine and glu-
tamate residues are conserved in RNases in other plant
species (Figure 3b), excluding CalsepRRP, which is an in-
active RNase because it lacks one histidine residue
(replaced by Lys70) essential for RNA degradation (Van
Damme et al. 2000). Therefore, the proteins encoded by
AK061438 and AK109411 may be inactive for RNA deg-
radation (Maclntosh et al. 2010).

In contrast, RNA degradation increased in the crude
extract of Zn-deficient citrullus (Sharma et al. 1981) and
black gram (Pandey et al. 2002). RNA degradation in a
crude extract of Zn-deficient rice shoots was also higher
than that in control shoots (Figure 4a), and it was inhib-
ited by adding ZnSO, but not FeSO, (Figure 4b). These
findings agree with a previous report showing that Zn
ions inhibited RNA degradation in a crude extract of
avena leaves (Wyen et al. 1971).

Discussion

The expression of genes involved directly or indirectly in
Zn transport increases under Zn deficiency. Moreover,
the genes involved in starch synthesis and transport were
up-regulated by Zn deficiency. Both Zn-deficient roots
and shoots accumulated starch (Figure 1), in line with
the gene expression pattern (Table 2). Starch may be
used as a carbon source; therefore, it is assumed that
Zn-deficient plants synthesize starch to withstand tem-
porary abiotic stress. However, it is also possible that dis-
ruption of glycolysis by Zn deficiency causes an over-
accumulation of soluble sugar, which ultimately results
in starch accumulation. It is already reported that the ac-
tivity of FBP aldolase in the glycolysis pathway decreased
under Zn-deficiency in the leaves of oat and clover, and
suggested that one of the reasons for a growth defect in
plants grown under Zn-deficient conditions is the break-
down of normal carbohydrate metabolism (Quinlan-
Watson 1951). The concentration of soluble sugar and
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Figure 1 Quantification of starch (a) and localization of starch granules in Zn-deficient and Zn-sufficient (control) plants by iodine
staining (b-k). (b) Zn- and Fe-sufficient roots (control); Zn-deficient roots (—=Zn) and Fe-deficient roots (~Fe), (c) control roots, (d-g) Zn-deficient
roots, (h) medium vein of old control leaf, (i) medium vein of Zn-deficient newest mature leaf, (j) medium vein of Zn-deficient old leaf, (k) large
vein of Zn-deficient old leaf. Bar=100 um. cor,; cortex, mes.; mesophyll cells, b.s,; bundle sheath cells.

starch increase in Zn-deficient bean shoots (Marschner
& Cakmak 1989). An increase in soluble sugar would
cause osmotic stress. We speculate that the starch might
be synthesized to avoid osmotic stress due to increased
soluble sugar in cells under Zn deficiency. Up-regulation
of the genes that encode soluble sugar transporters due
to Zn-deficiency suggests that sugar transporters help
distribute sugar to avoid osmotic stress (Table 2).
Zn-deficient plants have increased RNase activity
(Sharma et al. 1981; Pandey et al. 2002). We showed that
Zn-deficient rice shoots also have increased RNA degrad-
ation (Figure 4a). Our microarray analysis revealed that
the expression of one S-like RNase increased under Zn de-
ficiency, and the transcript levels were much higher than
those of other RNases (Table 3). However, unexpectedly,
this RNase protein seemed to have no enzymatic activity
as the histidine and glutamate residues essential for RNA

degradation were changed (Figure 3a, b; (Maclntosh et al.
2010; Kurihara et al. 1996; Van Damme et al. 2000)). Our
microarray analysis also showed that no gene for active
RNases were up-regulated by Zn deficiency. In addition,
Zn ions inhibited the RNase activity in a crude extract
from Zn-deficient shoots (Figure 4b). These findings sug-
gest that RNA degradation may be controlled by the Zn
concentration at a cellular level rather than by the level of
RNase mRNA.

The function of the inactive RNase induced by Zn
deficiency is not clear. An inactive S-like RNase
accumulate in the rhizomes of Calystegia sepium and is
suggested to play a role in vegetative storage proteins
(Van Damme et al. 2000). Thus, Zn-deficient rice might
accumulate inactive RNase for storage of amino acids.
The inactive RNase, also, accumulate in response to
drought stress (Salekdeh et al. 2002), one of the most
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Table 3 Microarray profile of genes encoding RNase in
rice

Accession Gene Ratio (—Zn/+Zn) Putative
No. Roots Shoots enzyme activity
AK060320 OsRNST 06+0.1 1.1£03 Yes
AK105061 OsRNS2 1.1£0.1 14+£0.1 Yes
AK058502 OsRNS3 12+03 12+03 Yes
AK061438 OsRNS4 29.2+10.7 57+041 No
AK109411 OsRNS5 1.0+£00 1.2+0.1 No
AK060320 OsRNS6 06+0.1 1.1+£03 Yes

fatal stresses for plants. Therefore, the induction of the
inactive RNase could be due to fatal stress for plants
caused subsequently by Zn-deficiency stress. However, in
our experiment, Fe-deficient stress decreased the
expression of AK061438 and AK109411 (Figure 4),
although Fe-deficient stress is more detrimental to plant
growth than other micronutrient-deficient stresses.
Moreover, the expression of AK061438 decreased under
sulfur-deficient stress (Ohkama-Ohtsu et al. 2004). These
data suggest that the induction of putative inactive
RNases is specifically caused by Zn-or water-deficient
stress rather than by general stress conditions in plants.

Taken together, Zn-deficient rice plants accumulate starch
that can be used as carbon and nitrogen sources. This
might be involved in the tolerance to Zn deficiency, damage
by Zn-deficient stress, or Zn homeostasis. To better
understand these mechanisms, it is important to elucidate
the differences between Zn-efficient and Zn-inefficient
cultivars, and the molecular functions of each gene involved
in tolerance to Zn deficiency should be revealed.

Conclusions

Microarray analysis of Zn deficiency rice revealed the up-
regulation of several genes involved in starch synthesis in
Zn deficient rice roots and shoots. The accumulation of

root shoot
C -Zn -Fe -Mn -Cu C -Zn -Fe -Mn -Cu

X
AK109411 y e

rRNA

Figure 2 The expression pattern of the genes encoding S-like
RNases predicted to lack RNAse activity. Each lane contained

10 ug of total RNA. C, control; -Zn, grown with a low Zn supply; -Fe,
grown with a low Fe supply; -Mn, grown with a low Mn supply; -Cu,
grown with a low Cu supply.

AK061438

Page 5 of 8

starch granules in the cortical cells of these tissues further
supported these results. A gene encoding inactive RNase
was much more highly transcribed than those encoding
active RNases. Moreover, the level of RNA degradation in
a crude extract of Zn-deficient shoots reduced after
addition of Zn to a crude extract of Zn-deficient shoots.
These results suggest that the tolerance of rice plants to
low levels of Zn may be promoted by the accumulation of
starch and inactive RNase proteins.

Methods

Plant materials and growth conditions

Rice seeds (Oryza sativa L.) were germinated for 1 week
at room temperature on paper towels soaked with dis-
tilled water. After germination, the seedlings were trans-
ferred to a Saran net floating on nutrient solution in a
glasshouse for 2 weeks. Two week old plants were trans-
ferred to a 20-L plastic container containing a nutrient
solution as described previously (Suzuki et al. 2006) with
or without ZnSQO,4, The pH of the nutrient solution was
adjusted daily to 5.5, and was renewed weekly. To com-
pare the response of rice to Zn deficiency with that to
deficiencies in other micronutrients, rice seeds were ger-
minated for 1 week and then transferred to the nutrient
solution described above. After 1 week, the seedlings
were transferred to fresh nutrient solution without Zn,
Fe, Cu or Mn and grown for 2 additional weeks.

Microarray analysis

Roots and shoots of four week old plants subjected to
Zn deficiency or grown under control conditions were
collected, frozen in liquid nitrogen, and stored at —-80°C
until use. RNA was extracted from the roots and shoots
of three plants, and total RNA (200 ng) from the Zn de-
ficient and Zn sufficient plants were labelled with Cy3 or
Cy5 using an Agilent Low RNA Input Fluorescent Linear
Amplification Kit (Agilent Technologies), and rice 44 K
oligo-DNA microarray analysis was performed in dupli-
cate using color swaps, according to the manufacturer’s
instructions, as described previously (Bashir et al. 2011;
Ishimaru et al. 2007). The induction ratios shown in the
tables were calculated as the relative increases in expres-
sion under Zn deficiency compared to the level of ex-
pression under control conditions.

Quantification of starch and iodine staining

Rice seeds were germinated for 1 week and transferred to
nutrient solution containing Zn. After 2 weeks, the seedlings
were transferred to a Zn-deficient nutrient solution for
3 weeks and harvested for analysis. The samples were
collected 2 h before sunset. To determine the level of starch,
each plant was ground using a mortar and pestle with liquid
nitrogen and dried overnight at 65°C. Around 50 mg of dried
plant tissue was used for starch quantification, employing a
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(a)

C1 C2C3
AK061438 1 --JEQRKFLLCLILGLEWATSGPAKTVN----------- MDs------ PERFYYRIR AYRTDSEYCEEVPK- - YG- YESED fF
AK109411 1 --YASGRIALLCLLGLELVEASPAAIA----------- MkD------ DKIFYQITF AY@AQTKAG@®MPK - - TDVAIZASD |§Y
AK105061 1 MATARKAPRMVAIWAVVVVVVAADLFGAAVARSASARHMVGKKOR - - E8yFARARSIE TI[@ASTRH - A TNGCCRSEFLOT [T
AK058502  1-- RATARVGLALIRWVVG- - - - --------- vemo------- DYRFFFilvVIKeliEle S V@DTKOS - [@8 Y PR - - - SGKEAAD 3G
AK106167 1 - -JEEKRQRLVISLSABCLVAVMSG-ALLPPRASAAGGVGRKRRWACHRYY VAR TVEROTSH (8 S SNGCCRSHELKF [§T
AK061032 1 --YEEKRQRLVISLS CLEVAVMS ---------------------- R v v VI RO T R OTSH - {8 SSNGCCRSHLKE [§T
AK060320 1 --UKLAVVAVA----ARLLUAAGVAS------------- Mo------- EFRFFYRVORIIZE S F@DTQAG - @@ FPD - - - TGKIFAAE [§G
* . Ca
AK061438 65 VKSFMTFD------------8SEN----------------———- TAVVR-[@NSDNPEBING - ------------- LDSIENN@INH
AK109411 66 VA@FTVYN------------ATTN------------------—- SSLSS-|8- SNTPIRMNQ - - - - - --------- HGDVTR- #MQ
AK105061 84 [BHEGEDY-------------DDE--------------ooooo - TWEA-BCRHTSEIMDE - - - - ---------- Hrr@cpTBEK
AK058502 61 MBSEMMEN - - - - - -~ -~ -~ - -RDD€l- -~~~ - - - -----————- SY)5ON@DPDSERRPSIN - - - - - - - - - -~ - - VSDILGS MRS
AK106167 83 MBSEMMEOY - - - -~~~ —— -~ - SY®- -~~~ - oo GWIESCI@RP - TTIINGN - - - - - - - - - - -~ - - fSRIFKTI WEE
AK061032 62 MBSEMMEOY - - - -~~~ - -~~~ - SV~ - - - GWIESC{@RP - TTIFNGNINVAANHP SYLONGI LMSRISKTI EE
AK060320 67 SN YAKCRPAAGAVADDDDEVVEMVVDGGAAVERHHRRROKCHIFEY( - - - - - DG LRPWE--------- MKDEVAE DA
Cs *
AK061438 PR----- TDGVNS[KS O@RKNADJLSAHAE -DY QLENTAFHKWRAVNQ KLL
AK109411 ofg----- KSGQKGIKN, RDKINPLSRIVS BF GLYSVKKMKEVMEEGI I
AK105061 SESSTCFSGKGPRAH D YFKYNE MIBASGENIHV SNG KQMALTDV I DIMIKCAF F
AK058502 Pl - - - - - NDGI H RSRLPvL RDGEV S - DG GYMTLSOfKGIMIOR GVV
AK106167 FSTCFGGKRPJVH YSKYN‘T KKAHWY)ERGG RKMLVGHMWVSEMEF SFF
AK061032 FSTCFG RPJNVH Y SKYNWY TKABKKAHMY)ERGG RKMLVGHMY SBMIEF SF F
AK060320 128 NJETISEKG - - - - - GKSFElS EKKRHDLAAVHAG, |5SDD ESMSLGSMRDEMAAATT
C7 Cs

AK061438 179 @vTEGVQERDGPFEKKELYEIYLCY BKDAKSFIDC- - - - PVLPN - LS@PAEVLFHPFHTWMLNTTS - - - - - - AANIVMPTETVLA
AK109411 178 €APALIQ@SKGPFNKF@LYQIYVCVAEDAKTFVEC- - - - PSPRKPYT@GDDILFHPFKKWMLKTNSTKSYAAADAIDQLLEAVMEL
AK105061 205 €asE0I SVEELRLCFDK BLKPLDCLTTTATNENVSKKKY@PRYITLPTYDPIVHANSTREIITVESEVYGYLYTS
AK058502 177 @AEMFVEGNRDESENSELYQLYFCV BAAGERFVDC- - - - PASPGGRP@GNRIEFPAF
AK106167 204 €@aMEST SV@ELRLCFHK BYQPRDCLVE- - -GENSVRRNH@PRYVTLPSYKPHAFGNSTEGI SNQVNVEHQSYQ
AK061032 197 MEST SV@ELRLCFHK BYQPRDCLVE - - - GENSVRRNH@PRYVTLPSYKPHAFGNSTEGISNQVNVEHQSYQ
AK060320 205 EAVIENLEGNRDANEET®LFQVYQCY BRSGKKLVDC- - - - QLPMQGK - [@RDKVKLPTF
(b) L.

AK061438 (rice) g3 [fFVKSFMTFDSSENTAVV KSENS 129

AK109411 (rice) KNARETS 128

CalsepRRP (C.sepium) SSACGSFDASDLAYRUARREEeS 137

RNS1 (A. thaliana)
RNS2 (A.thaliana)
RNS3 (A.thaliana)
RNase MC (balsam pear)
RNase LE (tomato)

Figure 3 Comparison of the amino acid sequences of RNase and RNase-related proteins in plants. (a) All of the amino acid sequences
predicted from the rice full-length cDNA database. (b) Partial amino acid sequences from C. sepium (CalsepRRP), A thaliana (RNS1, RNS2, and RNS3), M.
charantia (RNase MC), and L. esculentum (RNase LE). Gaps were introduced to maximize the homologies. Identical or similar residues are boxed in black and
grey, respectively. The three charged residues involved in the active site of RNase are indicated by asterisks, and the two aromatic residues, which
presumably maintain the conformational stability of the site, are indicated by a black circle. The sequences of the eight conserved cysteine residues in rice
are indicated by C1-C8.

EHIRYEISsEINeS] 127
€ EWRKHGTCSmikci)
THIHYEIeedN@n 119
SHIHYTIesEINES] o3
SHINVEIWSEINGA 126

total starch assay procedure kit (Megazyme, Bray, Ireland).  substrate. A 10-pg sample of total RNA was incubated in
To determine the localization of the starch granules, leaf 20 pL of 25 M Tris—HCI (pH 7.4) containing 25 mM KCI
blades and roots were cut with a scalpel into approximately —and 5 mM MgCl, in the presence of crude extracts from
1-cm sections. These sections were embedded in 5% agar  Zn-deficient and control shoots at 30°C for 15 min. To
and then cut into 80- to 130-um sections using a DTK-100  investigate the effects of metal on RNA degradation, 10 pg
microslicer (Dosaka EM Co. Ltd., Kyoto, Japan) and stained  of RNA were incubated with 1 mM and 10 mM ZnSO, and
with iodine. To remove the pigment in the leaf, the plant FeSO, under the conditions described above. A 3-ug
sections were soaked in 80% ethanol for 1 month. aliquot of incubated RNA diluted with distilled water was

loaded onto a 1.2% agarose gel containing ethidium

Measuring RNA degradation bromide. The extracts were prepared from 0.1 g of ground
RNA degradation was detected by electrophoresis (Van  tissue mixed with 1 mL of Tris buffer. The amount of
Damme et al. 2000). Total RNA from rice shoots grown  protein in the crude extract was quantified by the Bradford
under Zn-deficient treatment for 3 weeks was used as a  method.
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Figure 4 RNAse activity in crude extracts of rice shoots. (a)

10 ug of total RNA from Zn-deficient rice shoots were incubated
with 5 g, 1 ug, and 0.2 ug of protein from crude extracts of Zn-
deficient shoots (=Zn) and control shoots (C). 3 pg of incubated
total RNA were loaded into each lane. (b) 10 pg of total RNA from
Zn-deficient rice shoots and 2 ug of protein from crude extracts of
Zn-deficient shoots were incubated together with T mM or 10 mM
ZnSO, or FeSO,. 3 ug of incubated total RNA were loaded into each
lane.

Northern blot analysis

Total RNA was extracted from roots and shoots, and
10 pg per lane were electrophoresed in 1.2% (w/v)
agarose gels containing 0.66 M formaldehyde, transferred
to Hybond-N* membrane (Amersham Biosciences UK
Ltd., Buckinghamshire, UK), and hybridized with probes
at 65°C. Northern blots were analyzed using BAS 3000
(FujiFilm, Tokyo, Japan). The full-length rice cDNAs
(Rice Genome Resource Center, Tsukuba, Japan) were
used for labelling the probes.
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Additional file

Additional file 1: Table-S1. Microarray analysis of genes involved in
carbohydrate metabolism and transport in rice. The values present the
average + SE (n=4). Two weeks old rice plants were subjected to Zn
deficiency for two more weeks. Table S2. Microarray profile of genes
encoding RNase in rice. The values present the average +SE (n=4). Two
weeks old rice plants were subjected to Zn deficiency for two more
weeks.
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6-bisphosphate aldolase.
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