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Abstract

It is internationally accepted that malnutrition and chronic diseases in developing countries are key limitations to
achieving the Millennium Development Goals. In many developing countries, rice is the primary source of nutrition.
In those countries, the major forms of malnutrition are Fe-induced anaemia, Zn deficiency and Vitamin A deficiency,
whereas the major chronic disease challenges are Type II diabetes, cardiovascular disease and some cancers. There
is a growing corpus of evidence regarding both limitations and opportunities as to how rice could be an effective
vehicle by which to tackle key nutrition and health related problems in countries with limited resources. Rice
breeding programs are able to focus on developing new varieties carrying enhanced amounts of either Fe, Zn or
beta-carotene because of large public investment, and the intuitive link between providing a mineral/vitamin to
cure a deficiency in that mineral/vitamin. By contrast, there has been little investment in progressing the
development of particular varieties for potential impact on chronic diseases. In this review article we focus on the
broad battery of evidence linking rice-related nutritional limitations to their impact on a variety of human health
issues. We discuss how rice might offer sometimes even simple solutions to rectifying key problems through
targeted biofortification strategies and finally, we draw attention to how recent technological (−omics)
developments may facilitate untold new opportunities for more rapidly generating improved rice varieties
specifically designed to meet the current and future nutritional needs of a rapidly expanding global population.
Review
Background
As we enter the second decade of the 21st century, experts
agree that the world faces three major global health chal-
lenges. The first is completing the work to meet the mil-
lennium development targets of decreased malnutrition
and infectious disease. The second is the alarming increase
in the incidence of chronic diseases like heart disease, Type
II diabetes, obesity, and cancers in developing nations. The
third is a consequence of globalisation whereby traditional
diets are being replaced or supplemented with nutrition-
ally compromised fast-foods. Nutrition is a feature of each
of these challenges, and in a sad twist of irony, developing
countries, where rice is the staple, are the hardest hit by all
three of these global challenges.
* Correspondence: m.fitzgerald@irri.org
1Grain Quality and Nutrition Centre, International Rice Research Institute
(IRRI), DAPO 7777, Metro Manila, Philippines
12International Network for Quality Rice, Metro Manila, Philippines
Full list of author information is available at the end of the article

© 2012 Dipti et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
Over the past decade, rice improvement programs have
included key nutritional targets in their breeding pro-
grams, attempting to meet specific targets for Fe, Zn and
pro-vitamin A content. During this time, significant pro-
gress has been made in understanding both ways to in-
crease the micronutrient content of the polished and
unpolished rice, and the limitations to achieving those tar-
gets in conventional breeding programs. However, the po-
tential of rice to contribute to the prevention or
management of chronic diseases is not so widely recog-
nised, and research aimed to quantify that potential
receives a fraction of the public funding of rice and malnu-
trition, despite the massive and growing problem of
chronic disease that prevails in all rice-consuming coun-
tries (Nugent 2008). Perhaps this is because the association
between compounds in rice grains and chronic diseases is
more complex and less intuitive than, for example, in-
creasing Zn content of grains to address Zn deficiency. A
second reason could be limitations in the detection and
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identification of relevant grain constituents, meaning that
phenotyping tools are not available for breeding objectives.
The previous decade has borne witness to breath-taking
technological advances, which should enable research to
progress more rapidly both in identifying grain constitu-
ents, and determining the impact of these in the preven-
tion or management of chronic diseases.
This review will focus on the nutritional potential of

grains of both polished and unpolished rice, for the most
pressing issues of malnutrition and chronic diseases in
rice-consuming countries. We discuss opportunities and
obstacles, and identify roles that rice might play in
health and nutritional impact, and patterns of rice con-
sumption that could contribute to solutions for the
grand challenges to global health.

Malnutrition
Malnutrition in rice-consuming populations
Iron deficiency anaemia is a worldwide public health
problem, with global prevalence estimated at 24.8% (95%
CI: 22.9–26.7) (Shaw and Friedman 2011). It occurs
when the concentration of haemoglobin (Hb) falls below
11 g/dl in pregnant women, 12 g/dl in non-pregnant
women aged 15–49, and 11 g/dl in children under five.
Anaemia can cause maternal mortality associated with
childbirth. In adults it lowers work performance, and it
has been linked with reduced immune competence
(Shaw and Friedman 2011). The majority of the disease
burden is shouldered by developing countries with high
levels of rice consumption. The highest prevalence is
found in Africa, the Middle East, Central, South and
South-East Asia, and areas of Latin America, where two
thirds of children under five, and almost 50% of women
are anaemic (WHO 2008). One reason that Fe-deficient
anaemia is widespread amongst rice-consuming coun-
tries is because of the low concentration of Fe in
polished rice, like other starchy staples, combined with
the inability of poor people to supplement the staple
with other foods rich in micronutrients. A survey of 56
varieties showed that the average Fe content of the
polished grains was 4.3 ppm (Bounphanousay 2007);
however, the biological availability of Fe from polished
rice is low (Shaw and Friedman 2011).
The first cases of zinc deficiency were described in the

Middle East the 1960s, and attributed to the consump-
tion of diets high in anti-nutritional factors (Prasad et al.
1963). Zn deficiency is now recognised as one of the five
major factors contributing to disease burden in develop-
ing countries (WHO 2002). Zn deficiency leads to
decreased neuropsychological function, it contributes to
childhood mortality by increasing the incidence and se-
verity of acute and chronic diarrhoea, and in pregnant
women it leads to difficulties in childbirth, retarded foetal
growth, and foetal abnormalities (Prasad 2003; Tamura
and Goldenberg 1996). The prevalence of Zn deficiency
in developing countries is similar to that of Fe deficiency,
since the same dietary pattern, a reliance on polished rice
with minimal dietary diversity, contributes to both (Black
et al. 2008). In Central, South and South-East Asia and
sub-Saharan Africa, stunting due to Zn deficiency affects
40% of preschool children (Hotz and Brown 2004), and
82% of pregnant women (Bhutta and Haider 2009). Most
Latin Americans living in poverty consume a diet rich in
cereals and beans, and low in animal products (Berne
Pena et al. 2008), and therefore record high levels of Zn
deficiency (Amaya et al. 2002; WHO 2008).
Vitamin A deficiency (VAD) is as a public health prob-

lem among preschool-aged children in 118 developing
countries around the globe (West 2002). Vitamin A defi-
ciency occurs when serum retinol is less than 0.7 μmol/l,
or less than 20 μg/dl in children below 6 years. The
prevalence of VAD among school-aged children (5-15y)
in Latin American, South and Southeast Asian countries
varies from 6% in Sri Lanka to 36% in El Salvador
(Amaya et al. 2002; West 2002).
Vitamin A plays a major role in phototransduction,

and deficiency leads to xerophthalmia followed by
complete blindness (Mason et al. 2005). Beta-carotene is
the precursor of Vitamin A. In a survey of 3000 varieties
of rice, only 20 varieties were found to contain β-
carotene (Fitzgerald 2007). The amount of β-carotene
detected in those 20 was less than 0.2 ppm, and it was
found only in the bran layer; no β-carotene was detected
in the polished grains of any of the varieties (Fitzgerald
2007). Therefore people deriving most of their calories
from polished rice are at the highest risk of VAD, since
other staples, such as certain varieties of wheat, maize
and orange-fleshed sweet potatoes contain β-carotene.

Solutions to malnutrition through rice
In the context of such widespread malnutrition in the
world’s major rice consuming countries, agricultural stra-
tegists recognised a potential role for rice, if breeding pro-
grams could elevate the micronutrient levels in rice (Bouis
and Hunt 1999). This led to a paradigm shift in breeding
programs, as selection for nutritional traits commenced,
with the objectives of elevating Fe and Zn, and incorporat-
ing β-carotene into polished grains. This program was first
launched under the umbrella of the Consultative Group
for International Agricultural Research (CGIAR) Micronu-
trient Program, which then underwent reform in 2004 to
become Harvestplus, an autonomous organisation that
sets the targets and coordinates the multilateral efforts to
increase Fe, Zn and β-carotene in staple crops, including
rice (www.harvestplus.org).
The minerals in unpolished rice of 60 popular varieties

(Table 1) show that there is less than 10% variability for
all minerals except Zn, Mn, and Cu. By exploring wider

http://www.harvestplus.org


Table 1 Amount of selected micro and macro minerals in unpolished grains of 60 popular rices from South-East Asia
(Data from Indrasari 2002)

Ca P Mg K S Fe Zn Mn Cu

Amount (ppm) 92.44 3720.59 1488.82 2823.53 1309.12 11.69 23.89 32.51 3.07

Standard deviation 14.13 243.43 103.59 264.07 111.37 1.71 3.96 7.25 1.04
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sources of diversity within the species, significantly more
variability was found for the amount of Fe and Zn in un-
polished rice (Gregorio 2002). However it is not always
possible to extrapolate data from unpolished rice to
white, polished rice. By replotting data of 70 varieties of
unpolished rice and the same varieties polished to a de-
gree of milling of 10% (Bounphanousay 2007), it can be
seen that the Fe content of all the polished rices clusters
around 4 – 5 ppm, despite variation in Fe before re-
moval of the bran layer (Figure 1). By contrast, the Zn
content of the unpolished grains shows an association
with the Zn content when the grains are polished, and
also shows a range in Zn contents of polished rice from
10 – 20 ppm (Figure 1).
In the past ten years, significant international effort

has been expended to search the diversity of the species
for elevated Fe and Zn in the polished grain (Hunt et al.
2002; Jiang et al. 2007; Liang et al. 2007; Liang et al.
2008; Liu et al. 2004; Ma et al. 2005; Tucker 2003;
Vasconcelos et al. 2003; Wang et al. 2004; Welch and
Graham 2004). As suggested by Figure 1, variation for
Zn content was discovered, and focussed selection and
careful phenotyping has enabled rice improvement pro-
grams to release varieties with elevated Zn (Virk and
Barry 2007). Models using the levels of Zn that can now
Concentration in polished grain (ppm)
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Figure 1 Fe (squares) and Zn (circles) content of unpolished
and polished rice of seventy varieties of rice.
be achieved in polished rice suggest that the increase in
Zn will lead to a significant decrease in the prevalence of
Zn deficiency in both adults and children in rural
Bangladesh (Arsenault et al. 2010).
After searching widely through the diversity of the

species, and its wild relatives, rice improvement pro-
grams have not found variation in the endosperm for Fe.
This suggests that there is either physiological regulation
of the Fe that exchanges from the maternal to the filial
tissues; or no biological reason, therefore mechanism,
for Fe to accumulate in the endosperm. Rice improve-
ment programs have therefore concluded that elevating
Fe in the grain can only be achieved by the use of trans-
genic techniques (Johnson et al. 2011).
Transgenic technology successfully elevates Fe in the

grain, suggesting no physiological barrier regulating it. In
one study, a ferritin gene from soybean was expressed in
the endosperm, leading to the accumulation of Fe (Qu
et al. 2005; Vasconcelos et al. 2003). Another study pyra-
mided a ferritin gene from common bean into the grain to
increase Fe, with a phytase gene from Aspergillus to in-
crease bioavailability of the Fe (Lucca et al. 2002). More
recently, one study showed a significant increase in Fe
content of polished grains by expressing a nicotianamine
synthase (NAS) gene from barley in the rice endosperm
(Lee et al. 2009). In another study, the NAS genes from
rice, OsNAS1, OsNAS2 and OsNAS3, that usually express
in roots and shoots, were expressed in the endosperm
leading to levels of Fe in polished grains that meet and ex-
ceed the Harvestplus targets (Johnson et al. 2011). Taken
together, these studies show that it is possible for iron to
enter the endosperm in different forms, and the studies all
indicate that a mechanism to import Fe into the endo-
sperm has simply not previously evolved. The ability for
different forms of Fe to accumulate provides options to
maximise its bioavailability.
The small amount of iron that occurs naturally in the

grain and the aleurone layers of the endosperm was un-
able to reverse Fe-induced anaemia in women (Haas
et al. 2005). Transgenic rice with the ferritin gene from
soybean was able to reverse anaemia in rats with the
same efficiency as FeSO4 (Murray-Kolb et al. 2002), but
the same rice had no effect on iron status of piglets
(Schaffer et al. 2004). These contradictory findings sug-
gest that bioavailability of ferritin is complex. By con-
trast, the Fe chelated in nicotianamine was found to be
bioavailable to humans (Zheng et al. 2010). This suggests
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an argument for testing the most powerful gene for ele-
vating endosperm Fe, OsNAS2 (Johnson et al. 2011), in
other genetic backgrounds, to test (i) if the phenotype is
the same in different genetic backgrounds, (ii) for any
negative effect on grain yield and grain quality, and (iii)
whether the next generation of seedlings, nourished by
the endosperm, suffers any effect due to the presence of
the iron in the endosperm. Varieties expressing OsNAS2
in the endosperm possibly offer a solution, other than by
reason of bioavailability, to reversing Fe-anaemia. The
other transgenic examples use genes from other species
to accumulate Fe, whereas those with OsNAS2 in the
endosperm accumulate Fe using a gene that naturally
occurs in rice. Transgenic technology was used only to
change the expression pattern of that gene. This differ-
ence in the degree of transgenic technology, where
transgenic techniques were only used to change where
the gene expresses in the plant, could ease the road to
deregulation and the grains might be acceptable to a
wider group of consumers.
A solution to VAD is being tested using transgenic

technology to insert the genes necessary to enable the
rice grain to accumulate β-carotene, creating Golden
Rice (Beyer et al. 2002; Grusak 2005). The transgenes
have recently been crossed into popular and high-
yielding varieties using conventional breeding techniques
(http://irri.org/news-events/hot-topics/golden-rice). Re-
cently, a preliminary feeding trial in the US showed that
the β-carotene from Golden Rice is efficiently converted
to retinol (Tang et al. 2009). However, there is very little
other information in the public arena about the effect of
the transgenes on nutritional, sensory and postharvest
quality of the grains of Golden Rice. The high bioavail-
ability, relative to some other sources, was ascribed to
the simple starch matrix of the rice (Tang et al. 2009). In
carrots, β-carotene is located in crystalline chromoplasts
Figure 2 Global distribution of the prevalence of type II diabetes in 2
data (www.idf.org/diabelesatlas).
where it is less bioavailable than the β-carotene from
mangoes, which is held in lipid droplets (Brackmann
et al. 2011). The location of β-carotene in rice grains is
unknown, but its high bioavailability suggests that it is
not in chromoplasts. This could also mean that the β-
carotene is susceptible to auto-oxidation (Ramakrishnan
and Francis 1979). After harvest, rice is usually dried to
about 12% moisture for storage. In a starch system con-
taining crystalline β-carotene, and stored at room
temperature for four weeks at 11% moisture, a 30%
loss in β-carotene, due to auto-oxidation was found
(Ramakrishnan and Francis 1979). Presumably the
creators of Golden Rice have achieved a balance be-
tween bioavailability and loss due to auto-oxidation,
in order to maximize the potential impact on the conse-
quences of VAD, and have fully characterized any oxida-
tion products that could accumulate in grains. Wider
performance testing, including yield trials as well as clin-
ical trials with VAD-deficient target populations in devel-
oping countries will be conducted in the near future to
verify both bioavailability and potential health benefits
of Golden Rice (http://irri.org/news-events/hot-topics/
golden-rice). Assuming that all regulatory requirements
will be met, IRRI projects that Golden Rice may be ready
for release in 2013 (www.irri.org).

Chronic diseases
Chronic diseases in rice consuming countries
The total number of people with Type II diabetes melli-
tus (DM) is projected to rise from 171 million in 2000 to
366 million in 2030 (Wild et al. 2004). Figure 2 shows
the prevalence of Type II DM in each country in 2010,
and the projected distribution by 2030 (Shaw et al.
2010). Saudi Arabia and North America have the highest
prevalence (Figure 2). By 2030, a significant increase in
prevalence is seen for Latin America, Africa, and South
010 (a) and project in 2030 (b). Replotted from the Diabetes Atlas
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and Southeast Asia (Shaw et al. 2010). One of the major
risk factors is that developing countries are changing
their eating habits (Misra et al. 2010), leading to an
obesity epidemic, termed the nutrition transition (Astrup
et al. 2008; Hossain et al. 2007; Yoon et al. 2006). In
many developing countries, low fat diets are being
replaced by fast foods that are high in fat, and this is
leading to significant increases in obesity (James 2008).
The increase in the proportion of the population with
obesity is one of the greatest risk factors for diabetes,
coronary disease and some cancers (Kopelman 2000).
Coupled with population growth, rice consuming coun-
tries are heading towards a major public health crisis,
with significant financial risk at both the household and
national levels.
Each year, an estimated 2.5 billion cases of diarrhoea

occur among children under five years of age (Zaidi
et al. 2004). Significantly, the median incidence of diar-
rhoeal diseases in children under five in developing
countries has changed little since the early 1990s (Jami-
son et al. 1993; Parashar et al. 2003). More than half of
these cases are in Africa and South-East Asia, where
bouts of diarrhoea are more likely to result in death or
other severe outcomes, such as significant loss of vita-
mins and minerals (Udomkesmalee et al. 1990). By pla-
cing these figures and trends in the context of the
United Nations Millennium Development Goal 4, which
aims to reduce childhood mortality by two-thirds be-
tween 1990 and 2015, it becomes clear that many coun-
tries in South-East Asia might not meet this target (You
et al. 2010). In addition, these data provide an illustra-
tion of the vicious cycle of malnutrition, where chronic
diarrhoea could prevent children from reaping nutri-
tional benefits of rice varieties, developed especially to
address malnutrition, with elevated concentrations of
vitamins and minerals.
In 2000, more than half the 16.7 million world deaths

from cardiovascular diseases were in developing countries,
(WHO 2001) many of these in South and South-East Asia.
Coronary deaths in India are expected to double over the
next 20 years (Ghaffar et al. 2004), and they reached 2 mil-
lion in 2010. Cardiovascular diseases were the leading
cause of death Malaysia (Statistics 2010), which is mainly
due to hypercholesterolaemia and hypertension (Statistics
2006; Yunus et al. 2004). In 1998, the cause of death from
cardiovascular disease in Bangladesh was 12.5%, Bhutan
14.8%, India 13.0%, Indonesia 23.2%, Maldives 24.8%,
Myanmar 12.7%, Nepal 1.9%, Sri Lanka 20.1%, and
Thailand 17.1% (WHO 2002).
Cardiovascular disease is a far greater public health

problem in developing countries than previously rea-
lized, particularly in younger people, according to a re-
port that combined population estimates for five lower
to middle income countries with current death rates and
workforce data to calculate the effects of cardiovascular
disease on society and on the workforce. A conservative
estimate showed that at least 21 million years of future
productive life were lost each year in the five countries
because of cardiovascular disease. Future predictions
were even more disturbing, with the number set to rise
to 34 million years of life lost by 2020 (London 2004).
The cost of managing cardiovascular diseases has been

increasing in several countries and regions of the world
(Leal et al. 2006). One study estimated the burden of
cardiovascular diseases in 24 countries of the European
Union, and reported the financial burden of cardiovascu-
lar diseases was €169 billion per year, with direct health-
care costs accounting for 62% of the cost, followed by
costs of informal care, and indirect costs associated with
loss of production due to early death, and the loss of
productivity due to morbidities (Leal et al. 2006).

Potential solutions to chronic diseases from rice
Whole-grains are the unpolished version of cereal grains,
consisting of the germ, bran, and endosperm; while
polished grains lack both the germ and bran. The scientific
community generally considers whole-grain foods to in-
clude those that contain the same amount of germ and
bran that would typically be found in the unprocessed
grain (Seal et al. 2006). By this definition, whole-grain rice,
whether consumed intact or pulverised into flour, is a
whole-grain food. Consequently, epidemiological studies
designed to identify dietary patterns associated with
reduced incidence of chronic disease typically classify un-
polished, or brown, rice as a whole-grain (Jacobs et al.
2007; Wang et al. 2007). There is a significant corpus of
research describing components in whole-grain rice which
have potential for nutritional impact (Amissah et al. 2003;
Eggum 1979; Goffman et al. 2003; Rukmini and Raghuram
1991; Shen et al. 2009; Storck et al. 2005).
Whole-grains are hypothesised to contribute positively

to human health due to their fibre, minerals (Table 1),
vitamins (e.g., vitamins B, D and E), phenolic com-
pounds, phytoestrogens (lignans), and other phytochem-
icals (Slavin et al. 1999). These compounds may influence
biological functions individually or synergistically. Whole
grain rice contains similar types of compounds to other
cereal grains albeit with a few unique types and in unique
percentages.
Epidemiological studies suggest consuming whole-

grains provides a protective effect against several chronic
diseases. Whole-grain rice contains unique types and
amounts of some phytochemicals such as the gamma-
oryzanol and tocotrienol fractions. Numerous cell cul-
ture, animal, and human-based studies have demon-
strated the potential health benefits of consuming
whole-grain rice and some of its phytochemical frac-
tions. The majority of these studies have focused on the
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reduction of risk factors for cardiovascular disease
(Cicero and Derosa 2005; Hallfrisch et al. 2003), Type II
diabetes (King et al. 2008; Topping 2007; Zhang et al.
2010), and several cancers (Williams and Hord 2005). By
far, the strength of the evidence lies in there being a
positive relationship between whole grain rice consump-
tion and reduced risk of disease. Some of the studies
supporting these associations, however, have dealt with
specific constituents in rice bran and endosperm, and
have involved administration of fractions at higher
intakes than would be practical from consuming whole
grain rice. However, it is possible that these fractions
may impact biological targets synergistically and thus
exert much higher chemo-preventive efficacy than that
found for individual compounds. This possibility may be
even more likely when whole grain rice is consumed as
part of the daily diet over a long period of time.
The bran components with potential nutritional value

include the vitamin E complex of unpolished rice, which
is unusually high, ranging from 179–389 mg/kg bran,
with an average of 72.5% of the isomers being tocotrie-
nols (Bergman and Xu 2003). Other cereals contain
much lower average amounts of Vitamin E compared
with rice: wheat 23 mg/kg, barley 8 mg/kg, spelt
18.1 mg/kg, and rye 11.9 mg/kg (Nielsen and Hansen
2008). The lipid content of rice bran is also high in com-
parison to other grains. Its primary unsaturated fatty
acids are oleic, linoleic and alpha-linoleic, while its pri-
mary saturated fatty acids include palmitic and stearic
acids. The non-saponifiable fraction of rice bran oil con-
tains tocotrienols, tocopherols, phytosterols, gamma-
oryzanol compounds, policosanols, and saponines. Each
of these phytochemical fractions consists of several com-
pounds. For example, the gamma-oryzanol fraction is
composed of ferulic acid esters of triterpene alcohols.
The three primary compounds are cycloartenyl ferulate,
24-methylenecycloartanyl ferulate and campesteryl feru-
late (Xu and Godber 1999), and there are at least seven
more compounds in that fraction (Akihisa et al. 2000;
Xu and Godber 1999). Rice bran also contains phenolic
compounds which reportedly vary a great deal in quan-
tity and type across different cultivars (Goffman and
Bergman 2002; Goffman and Bergman 2004).

Cardiovascular disease and whole-grain rice
Studies on the potential health promoting properties of
rice on cardiovascular diseases began more than four dec-
ades ago (Nakamura 1966). These studies report positive
effects of whole-grain rice (and several of its fractions)
consumption on cardiovascular disease risk factors, such
as hypertension and cholesterol, using rodents, rabbits,
non-human primates, and humans (Cicero and Derosa
2005). The association between whole-grain consumption
and protection against heart disease and stroke is
considered unequivocal by many, but the exact mechan-
ism is not clear (Flight and Clifton 2006).

Hypertension
Hypertension is a significant risk factor for coronary dis-
ease. The Dietary Approaches to Stop Hypertension
(DASH) diet recommends those with hypertension to in-
crease consumption of whole-grains (Lochner et al.
2006). These recommendations are based on the find-
ings of cross-sectional studies examining the correlations
between lifestyle and the development of cardiovascular
disease. Conclusions from studies examining the specific
effect of whole grain consumption on blood pressure,
however, have been inconsistent (Davy et al. 2002; Pins
et al. 2002). Many of these studies did not control diet-
ary composition except for whole-grain content and
some used whole-grain fractions as opposed to whole-
grain foods. By including whole-grain rice as a focus, the
design of many of the previous studies evaluating whole-
grain consumption and hypertension improved (Hall-
frisch et al. 2003). Non-hypertensive men with elevated
plasma cholesterol levels were fed an American Heart
Association Step 1 diet with or without inclusion of un-
polished rice/whole wheat, barley, or a combination in a
Latin square design. Also controlled were levels of pro-
tein, calcium, magnesium, sodium, and potassium in the
diets. Systolic, diastolic, and mean arterial blood pres-
sures were reduced in those who consumed soluble fibre
from barley or insoluble fibre from unpolished rice and
whole wheat, and consumption of the Step 1 diet with-
out the whole-grain component did not have any effect
on blood pressure (Hallfrisch et al. 2003).

Serum lipid levels
A large number of animal, nonhuman primate, and
human-based studies provide strong evidence that rice
bran and its fractions lower serum cholesterol and trigly-
ceride levels (Cicero and Derosa 2005). One study, using
18 humans with moderately-high blood cholesterol levels,
were fed 100 g per day rice bran or oat bran for two 3-
week periods in a crossover design (Hegsted et al. 1993).
Prior to each bran phase, a control diet without bran was
provided. Total cholesterol levels decreased when rice
bran or oat bran was consumed, though neither of the
brans had a significant effect on HDL- and VLDL- choles-
terol or triglycerides (Hegsted et al. 1993). Another human
study evaluated the effect of rice bran, oat bran and a rice
starch placebo on moderately hypercholesterolemic, non-
smoking, non-obese adults during a 6-week, randomised,
double-blind trial (Gerhardt and Gallo 1998). The 23
males and 21 females were given 84 g of product per day
to consume in addition to their regular diet. Significant
total cholesterol reduction and improvement in the total
cholesterol to HDL-cholesterol ratio in most of these
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individuals who consumed the bran was reported. Again,
there was no significant difference between the effective-
ness of the rice and oat bran (Gerhardt and Gallo 1998).
Both these studies offer rice consumers an option that
does not include changing their preferred staple.
Studies using hamsters and nonhuman primates

have concluded that the rice bran oil fraction gives
rice bran its cholesterol lowering properties (Kahlon
et al. 1991; Nicolosi et al. 1991). Studies using moderately-
hypercholesteroleimic healthy humans (n=26) in a parallel
arm design and a randomised crossover design, have com-
pared the effects of a diet including dietary fibre from rice
bran or defatted rice bran, and dietary lipids from rice bran
oil or another oil blend with a fatty acid composition simi-
lar to rice (Most et al. 2005). The study showed that defat-
ted rice bran did not lower lipid levels, and consumption
of the diet containing rice bran oil compared to the control
diet resulted in lower total cholesterol levels (Most et al.
2005), suggesting that the oil in rice bran contains unique
compound/s for lowering cholesterol. The fractions of pri-
mary focus for this capacity have been the tocotrienols,
sterols, gamma-oryzanol and policosanols.
Less than 1% of all research published regarding the

Vitamin E complex has focused on tocotrienols. Reviews
indicate that most of the research on tocotrienols has fo-
cused on this fraction from palm oil or individual iso-
mers, while only a limited focus has been placed on this
fraction in rice bran (Packer et al. 2001; Rasool and
Wong 2007; Sen et al. 2007). Research with cell cultures
has shown that tocotrienols together and as individual
isomers influence cholesterol synthesis by regulating the
expression of 3-hydroxy-3-methylglutaryl-coenzyme A
reductase, the rate-limiting enzyme in the cholesterol
synthesis pathway (Parker et al. 1993). Interestingly, α-
tocopherol has shown an opposite effect in hypercholes-
terolemic human subjects (Qureshi et al. 2002).
Conflicting conclusions have been reported from clin-

ical trials that examined the effects of rice and palm
tocotrienol rich fractions on cholesterol (Packer et al.
2001; Rasool and Wong 2007; Sen et al. 2007). The stud-
ies that reported an inhibitory effect of tocotrienols on
total cholesterol levels used preparations with less than
20% tocopherols. The reverse was reported for studies
that used preparations with a greater percentage of toco-
pherols. Rice bran reportedly contains approximately
25% tocopherols and 75% tocotrienols (Bergman and Xu
2003), so this could be one of the ways that rice bran
lowers cholesterol. Potentially confounding aspects of
the design of human trials have been that the relative
amounts of the four tocotrienol isomers varied between
these studies. Several of these studies, also, did not con-
trol the amount of dietary lipids and alcohol consumed
by the subjects; both have been reported to modulate
the effects of tocotrienols (Qureshi et al. 1997).
Policosanols are a mixture of primary long-chained
alcohols. Sugarcane policosanols reduced plasma LDL
cholesterol in several clinical trials of varying duration
and at efficacious doses, ranging from 2 to 40 mg per
day (Chen et al. 2005; Varady et al. 2003). Whole-grain
rice contains policosanols but its individual compounds
are found in different ratios compared to the similar
fraction in sugarcane. Rice policosanols (10 mg per day),
when fed to hypercholesterolemic men and women in a
randomised, double-blind, crossover, placebo-controlled
trial (n = 70), reportedly lowered the subjects plasma
total cholesterol, and increased levels of Apolipoprotein
A-1, the major protein componenet of HDL (Reiner
et al. 2005). However, a lack of cholesterol-lowering effi-
cacy of sugarcane policosanols was reported from a
study with a similar design to those reported above
(Berthold et al. 2006). Thus, the association between
policosanol consumption and plasma cholesterol reduc-
tion is unclear. To clarify this situation, future research
will need to take into consideration that the specific
compounds and amounts of each type in the policosanol
fraction vary both between and within crops.
Numerous studies with rodents have reported that the

gamma-oryzanol fraction from rice bran is able to lower
serum cholesterol levels in animals fed different model
hypercholesterolemic diets (Cicero and Derosa 2005).
The mechanism of action appears to include increased
faecal excretion of cholesterol and its metabolites (Wil-
son et al. 2007). These authors also reported that ferulic
acid from rice bran showed anti-atherogenic properties,
but through a different mechanism. The serum choles-
terol lowering properties of gamma-oryzanol have not
been confirmed in humans.
While it seems clear that there is an association between

the consumption of whole grain rice and a lowering of
cardiovascular risk factors, the mechanisms leading to this
could be due to multiple compounds. In order for rice im-
provement programs to make use of these associations,
there is a need for investment targeted specifically towards
identifying the mechanism of risk reduction, understand-
ing variability within rice for managing cardiovascular risk
factors, and then using that information to develop pheno-
typing tools so that selection for heart-healthy varieties of
rice is possible in the future.

Cancers and whole grain rice
A meta-analysis of prospective epidemiologic studies
suggests that consumption of whole-grain products is in-
versely associated with the development of several forms
of cancer (Williams and Hord 2005). However, only a
limited number of human, animal and cell culture-based
studies that specifically evaluate the association of whole
grain rice, or it’s fractions, with cancer risks have been
done, and many studies cannot be done in humans due
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to limitations in analytical capability. The studies indi-
cate that whole grain rice contributes to mitigating can-
cers, tumour growth and proliferation by two different
mechanisms. There is an increasing body of evidence
that resistant starch (RS) in the whole grain provides
one mechanism, and the second is through bioactive
compounds that could be present in the bran layer of
the rice. However, neither mechanism is well under-
stood, but the results described below suggest that both
mechanisms are worthy of pursuing further.
Colon cancers arise from benign neoplasms and evolve

into adeno-carcinomas through an histological sequence
beginning with either adenomas or hyperplastic polyps.
A link between dietary fibre and reduced risk of colon
cancer was first proposed several decades ago. That as-
sociation remains controversial; however, confidence in a
link between whole grain consumption and reduced risk
of colorectal cancers is growing (Annison and Topping
1994; Bird et al. 2000; Park et al. 2005; Schatzkin et al.
2007; Topping et al. 2003; Topping 2007; Topping and
Clifton 2001). Several mechanisms have been proposed
to explain this possible association. Cereal bran may
have a protective effect against colorectal cancer by
altering the colonic bacteria profile via addition of fer-
mentable carbohydrates, such as resistant starch (RS).
Recent evidence suggests that RS results in an

increased production of short chain fatty acids (SCFA)
such as butyrate in the colon (Topping 2007). These are
considered to play a number of roles in bowel health, in-
cluding recovery from chronic diarrhoea, lowering ab-
sorption of potential carcinogens, and repair of damaged
DNA (Topping 2007). Studies using pigs found faecal
SCFA levels higher when the pigs were fed whole grain
rice relative to feeding with milled rice and bran. This
was reportedly due to greater RS in the whole grain rice
wherein the bran layer protected the starch from diges-
tion, enabling the starch to ferment in the large intestine
where it produced SCFA (Bird et al. 2000). Consistent
with this, a systematic study of RS in a diverse set of
rices showed that RS in unpolished cooked rice was 30%
higher than in the polished cooked rice of the same var-
iety (Williams et al. 2005), probably due to the bran
layer preventing digestive enzymes from accessing the
starch. RS can also be manipulated in polished grain.
The starch branching enzyme IIb gene (SBEIIb) has a
large effect on RS, and varieties that carry a mutation in
this gene show elevated RS (Butardo et al. 2011), but
when expression of that gene is completely silenced with
specific transgenic techniques, the RS is significantly
increased (Butardo et al. 2011).
Familial adenomatous polyposis is an hereditary condi-

tion that predisposes people to colon cancer. Apc(Min)
mice carry a mutation in the same gene that causes fa-
milial adenomatous polyposis in humans. These mice
develop large numbers of intestinal tumors at an early
age and are thus used as a model for evaluating chemo-
preventive interventions for humans with intestinal
polyps. When rice bran was included in the diet in a
cross-over experiment, the Apc(Min) mice showed a de-
crease of 51% in the number of intestinal adenomas
(Verschoyle et al. 2007). The mechanism is unclear, but
is likely to be due to compounds present in the bran.
Isoprenoids are known to possess potent anti-cancer

activity (Sen et al. 2007), and whole grain rice contains
several different types of these compounds. For example,
γ-tocotrienol, the tocotrienol that rice has in the largest
quantity, has been documented using tissue culture
techniques to be the most potent anti-cancer Vitamin E
isoform of all the isomers that occur in nature (Sen et al.
2007). Numerous studies documenting this observation
have shown that tocotrienols and γ-tocotrienol in par-
ticular, target Nuclear Factor-κB (a transcription factor)
which reduces inflammation and thus mediates the im-
pact of carcinogens (Ahn et al. 2007; Nesaretnam and
Meganathan 2011). Work using mice not only supports
the results found using cell lines, but when extrapolated
to humans, indicates that an efficacious dose of tocotrie-
nols could be consumed from the diet (He et al. 1997).
Other isoprenoids in whole grain rice have been
reported to interfere with the colony-forming ability of
breast and colon cancer cells (Hudson et al. 2000). Eight
phenolic compounds, protocatechuic acid (Hudson et al.
2000), ρ-coumaric acid (Zhou et al. 2004), caffeic acid
(Hudson et al. 2000), ferulic acid (Tian et al. 2004), sina-
pic acid (Hudson et al. 2000), vanillic acid (Zhou et al.
2004), methoxycinnamic acid and tricin (Hudson et al.
2000), were identified in the extracts studied. Of these
compounds, the flavonoid tricin has received the great-
est research attention (Zhou and Ibrahim 2010) which
has likely been due to its greater activity in interfering
with cancer cells in tissue culture experiments at levels
lower than the other phenolics studied, making it an eas-
ier compound to study than others.
During tumour metastasis, a critical early step is cell

invasion of the basement membrane - a dense meshwork
of collagen, glycoproteins, and proteoglycans which,
under normal circumstances, prevents cells from moving
away from their sites of origin. Cancer cells, however, se-
crete several different types of enzymes that digest the
proteins in the basement membrane (Fidler 2003). When
the membrane has been sufficiently weakened, the
tumour is able to push through the membrane (Liotta
and Stetler-Stevenson 1991), which allows cells to invade
surrounding tissue. Another isoprenoid fraction from
whole grain rice, specifically the anthocyanins cyanidin
3-glucoside and peonidin 3-glucoside were isolated and
shown to inhibit the mobility and invasion ability of
human hepatocellular carcinoma (SKHep-1) cells (Chen
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et al. 2006). This effect was associated with a reduced
expression of several proteinases. In addition, these
compounds were fed to mice after subcutaneous inocu-
lation with SKHep-1 cells. Small solid tumours were
observed following cell inoculation and a 1.9-fold reduc-
tion in tumour volume and a 1.7-fold reduction in
tumour weight were reported after feeding the mice the
anthocyanin fraction from whole grain rice (Chen et al.
2006). The anthocyanin, antioxidant and phenolic con-
tent ranges enormously in rice, and several studies asso-
ciate it positively with coloured pericarps (Goffman and
Bergman 2004; Han et al. 2004; Oki et al. 2004; Shen
et al. 2009). Figure 3 shows the diversity in the colour of
the rice pericarps.
The studies described above all indicate that whole

grain rice plays a significant role in preventing cardio-
vascular risk factors, tumour growth and tumour prolif-
eration, through both the mechanical protection of
starch by the bran with the subsequent benefits of SCFA,
and the range of bioactive compounds in bran. These
data call for stronger links between rice researchers and
the medical fraternity, significant investment in research
to detect and identify the important grain constituents
and to quantify the nutritional impact in humans, and
techniques to deliver to rice improvement programs to
enable selection on bran quality. The bran content of
rice ranges from 5–8% (Bergman and Chen 2007), which
could be an immediately selectable trait for rice varieties
targeted to markets that consume either whole-grain
rice, or different forms of it, such as pre-germinated rice,
which is also consumed as whole-grain rice.
Figure 3 Diversity in the colour of the bran of unpolished rice.
Type II diabetes mellitus and rice
Diabetes is a chronic evolving disease associated with a
variety of micro- and macro-vascular complications. Al-
though pharmacological therapies are effective, the dia-
betes prevention trials in Finland and the U.S. remind us
that nutrition and lifestyle approaches can be more effect-
ive in delaying onset of the disease. In fact, these nutrition
and lifestyle approaches to diabetes prevention and treat-
ment should be given at least as much attention as drug
therapies. The use of low glycaemic index (GI) foods
should be considered as one of a number of tools available
to manage, or prevent the onset of, Type II diabetes.
The GI of a food quantifies the rate of release of glu-

cose into the blood in response to the carbohydrates
consumed. The glycaemic load (GL) is the mathematical
product of the GI and the amount of carbohydrate in
the food. A recent meta-analysis of 37 prospective obser-
vational studies concluded that GI and GL are both
strongly associated with Type II diabetes and its chronic
diseases (Barclay et al. 2008). Another recent study con-
firms this (Halton et al. 2008), and a prospective cohort
study and systematic review of six other cohort studies
concluded that two-servings-per-day of a whole grain
was associated with a 21% decrease in risk of type II dia-
betes (Munter et al. 2007). These studies consisted of
286,125 participants and 10,944 of these had Type II dia-
betes. A feeding trial of patients with Type II diabetes
found that those on the diet of lower GI had a signifi-
cant improvement in blood sugar status compared with
those on the higher GI diet (Nisak et al. 2010), strongly
suggesting that choice of carbohydrate will aid in the
management of blood sugar status.
Rice has generally been considered to be a food of

high GI (Brand-Miller et al. 1992). Several studies link
the consumption of rice with increased risk of develop-
ing Type II diabetes (Nanri et al. 2010; Villegas et al.
2007). Those studies were carried out in Japan and
Shanghai respectively, and in both those places, the rices
consumed are likely to be of high GI because they are
low amylose varieties (Sato et al. 2004; Fitzgerald et al.
2011). Both Nanri et al. (2010) and Villegas et al. (2007)
report an association between diabetes and rice con-
sumption, and the association was stronger in people
with low physical activity coupled with high intake of
rice. Another study based in Australia shows that the
risk of developing Type II diabetes was highest in people
who consume high levels of white bread together with
low physical activity (Hodge et al. 2004). The GI of white
bread is high (Foster-Powell et al. 2002). Together, the
three studies indicate that consumption of carbohydrate
of high GI is likely to increase risk of Type II diabetes,
especially when coupled with low physical activity, irre-
spective of the grain delivering the carbohydrate. In
areas where rice is the staple, correlations between
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consumption of high GI rice and Type II diabetes will
be found, however where wheat is the staple, the corre-
lations with Type II diabetes will be found for those who
consume white bread. Furthermore, when the diversity
of rice and rice products is explored, a significant range
in GI has been demonstrated. For a set of 260 varieties
of polished rice, GI ranged from 52 – 92 (Fitzgerald
et al. 2011). Rice products, such as parboiled rice and
rice vermicelli, have also been shown to give a GI of at
least 10 units below the GI of the white rice of the same
variety (Ranawana et al. 2009; Sato et al. 2010). These
studies suggest that particular varieties of rice and rice
products can be chosen to manage Type II diabetes, or
possibly prevent the onset of the condition.
It is currently unclear whether whole-grain rice (unpol-

ished) offers any advantage over polished rice for the man-
agement of blood glucose. A prospective study in the US
reported that consumption of polished rice led to a greater
likelihood of developing Type II diabetes than consump-
tion of whole-grain rice (Sun et al. 2010). However, Sun
et al. (2010) compared the average GI of brown and white
rice published by Foster-Powell et al. (2002), but only
three varieties were tested as both brown and white rice.
Comparing the GI values of the brown and white rice of
the three varieties, Doongara, Amaroo and Pelde, showed
no difference in GI for the brown and white forms of
Doongara and Amaroo (Foster-Powell et al. 2002). Fur-
thermore, other differences between the levels of physical
activity and other dietary choices of the brown and white
rice consumers studied by Sun et al. (2010) could easily
contribute to the difference in the incidence of Type II
diabetes. Two earlier studies that compared the GI of dif-
ferent varieties of whole-grain (brown) rice with the
polished rice of the same variety gave conflicting results.
The first study measured GI in eight healthy volunteers
who consumed whole-grain and polished rice in a rando-
mised experiment, and no difference in blood glucose re-
sponse was found between the pairs of whole-grain and
polished for the three varieties (Brand-Miller et al. 1992).
The second study found significantly lower blood glucose
responses when participants consumed the whole-grain
rice compared to the polished rice of the same variety
(Panlasigui and Thompson 2006). These differences could
be due to varietal differences, differences in cooking, dif-
ferences in measuring GI, or other factors of diet and life-
style. It is therefore not yet possible to conclude if the
consumption of whole-grain rice gives any advantage over
polished rice for the management of blood glucose status.
The Nurses' Health Study and the Harvard School of

Public Health indicate that higher intakes of Mg may re-
duce the risk of developing Type II diabetes (Lopez-
Ridaura et al. 2004). Research has shown that low levels
of Mg may impair insulin sensitivity or function. Con-
suming adequate levels of Mg may help insulin function
properly in the body, which may assist in preventing
Type II diabetes. Table 1 shows a significant amount of
Mg is found in the whole-grain, but polishing to white
rice removes 86% of it (Hansen et al. In Press).
The diversity of compounds found in the bran, metabo-

lites and minerals in the grain, structures of starch, non-
starch polysaccharides, and different cooking and proces-
sing methods are all likely to have some impact on the di-
gestibility of rice. Given that rice consuming countries
face a grand challenge with skyrocketing rates of Type II
diabetes, it is essential that we understand a lot more
about the digestibility of rice and the importance and roles
of other bioactive compounds from rice and bran. Invest-
ment is needed to enable science to identify and validate
important compounds, and deliver this knowledge, as phe-
notyping tools, to rice improvement programs.

Consumption of whole grain rice
Unpolished rice is not widely consumed world-wide, and
is most likely to be consumed in Western countries by
health-conscious consumers. It can be found in the mar-
kets in most Asian countries, but the belief is that the
unpolished rice is for the elderly, and anecdotally it is
said to provide nutritional and metabolic benefits. How-
ever, there are two methods of processing rice that are
likely to provide some of the nutritional value of whole-
grain to consumers. The first is parboiling of the paddy
before it is polished to white rice. The second is the rela-
tively new technique of pregerminating the brown rice
grain prior to cooking the brown rice, which alters the
biochemical profile of the bran and improves the cook-
ing and sensory properties of brown rice.
Parboiling involves three basic processes prior to

dehulling and polishing: soaking (or steeping), steaming/
boiling, and drying (Chukwu 1999). Parboiling is prac-
ticed in India, Pakistan, Sri Lanka, Bangladesh, West
Africa, the Americas and Europe, and the methods used
are all slightly different. After parboiling, the rice is
polished before it is consumed, and the polished parboiled
rice is considered to be of superior nutritional value com-
pared to polished rice that has not been parboiled (Amato
et al. 2002; Pedersen et al. 1989). The nutritional advantage
of parboiled polished rice is thought to be due to the leach-
ing of minerals and water-soluble vitamins from the bran
layers into the endosperm during the parboiling process
(Amato et al. 2002; Juliano 1985; Nunes et al. 1991). How-
ever, not all migrating minerals are recovered in the endo-
sperm. Comparisons between the mineral content of
brown (not parboiled) and parboiled brown rice of the
same variety show slight variations for the concentration of
Fe, Zn and Ca, suggesting that a proportion of these miner-
als was lost during the parboiling process (Heinemann
et al. 2005). Two studies have also shown a slight decrease
in carotenoid content of parboiled rice (0.003 mg to
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0.001 mg/100 g) (Gariboldi 1973; Otegbayo et al. 2001),
again, presumably due to leaching. Parboiling leads to the
migration of thiamine, riboflavin and bran pigments, such
as bioactive anthocyanins, into the grain (Lamberts et al.
2006; Manful et al. 2007). However, there is no systematic
study quantifying (i) leaching from the bran into the endo-
sperm, or (ii) the nutritional value of polished parboiled
rice due to different parboiling treatments, and no infor-
mation can be found about the leaching patterns of the
classes of bioactive compounds discussed above.
Pregermination is another processing method that could

enable consumers to avail of the nutritional value of bran.
In this process, the brown rice is soaked at 37°C for 24 h to
initiate the germination process (Finney 1983; Sakamoto
et al. 2007). The rice is then dried, and vacuum-sealed, and
it is not polished prior to consumption. Pregermination
leads to extensive biochemical changes in the pregermi-
nated rice compared with the ungerminated whole-grain
(Kayahara and Kikuichi 2000; Sakamoto et al. 2007). These
changes lead to significant increases in bioactive com-
pounds such as γ-aminobutyric acid (GABA), dietary fibre,
inositols, ferulic acid, phytic acid, tocotrienols, Mg, K, Zn,
γ-oryzanol, and prolylendopeptidase inhibitor (Kayahara
and Kikuichi 2000). Total phenolics increased to a max-
imum level after a germination time of 24 hours while
GABA, which was not present before germination, devel-
oped in significant quantities upon pre-germination
(Hirunpong and Tungjaroenchai 2008). Novel acylated
steryl glucosides appeared at the same level of bioactivity
as found in soybean after pre-germination (Usuki et al.
2007). In countries of South-East and North Asia, preger-
minated rice is marketed with the nutritional label of
GABA rice (Panchan and Naivikul 2009).
Germination provides further nutritional value by re-

ducing anti-nutritional factors in whole-grain rice, such
as phytate (Liang et al. 2008; Shallan et al. 2010). Phytate
inhibits the bioavailability of minerals by forming stable,
indigestible complexes (Ma et al. 2005; Welch and Gra-
ham 2004). The process of germination activates the
production of phytase, which catalyses the hydrolysis of
phytate (Sung et al. 2005). Moreover, the sensory proper-
ties of pregerminated rice are considered to be superior
to those of brown rice (Fujino and Kuwata 2004), and
this, together with the nutritional enhancement, could
increase the acceptability of pregerminated rice amongst
consumers of polished rice.
Exploring genetic variability for the response to preg-

ermination could lead to a wealth of new information
about the nutritional potential of rice. Partnerships with
the medical profession could enable nutritional impact
to be quantified, which could then flow through to rice
improvement programs, to improve the nutritional value
of rice by maximising the potential of the raw material,
and of the process.
New technologies for selecting tools for nutritional
quality
With the importance and relevance of nutritional com-
ponents being clear, there is an increasing demand for
more detailed information on the molecular mechanisms
behind the biochemical content of the rice grain, both
before harvest and after polishing. New high throughput
phenotyping platforms such as metabolomics, giving un-
precedented insights into grain composition, and HTP
genotyping platforms such as Next Generation Sequen-
cing, RNAseq and SNP arrays, which reveal the genetics
behind varietal differences, have huge potential.

Metabolomics as a new phenotyping tool for nutritional
compounds
Metabolomics approaches for plants have now been
around for little more than 10 years (Fiehn et al. 2000),
and give us the capacity to study the biochemical compos-
ition of plant materials in an untargeted manner (Hall
2006; Hall 2011). The biochemical profiles obtained, using
a range of now standard platforms, cover most of the main
groups of nutritionally-relevant small molecules. Large
(polymer) molecules are not included, which makes meta-
bolomics an excellent complement to other approaches
targeting key nutrient groups, such as starch and proteins
(Fernie and Schauer 2009; Hall 2006). Our knowledge of
the plant metabolome is still limited, as was demonstrated
recently using rice as an example to show, that even after
a detailed (literature) analysis of all available information
on this crop’s metabolites, we must still only have visua-
lised just a small fraction (Kind et al. 2009). Metabolomics
is helping to increase this coverage, but much work is still
needed if we are to link e.g. key nutrient traits with mix-
tures of known metabolites (Fernie and Keurentjes 2011;
Stewart et al. 2011).
For rice, only a few true metabolomics studies have been

published to date (see (Hall et al. 2008; Oikawa et al. 2008;
Tarpley and Roessner 2007)). Nevertheless, the potential
of the technology has clearly been recognised, particularly
in areas such as stress tolerance (Ahuja et al. 2010; Tarpley
and Roessner 2007), grain development, grain quality, and
nutritional value (Fitzgerald et al. 2009; Yamakawa and
Hakata 2010). While early rice metabolomics was often
performed on leaf material (Capillary Electrophoresis MS,
(Sato et al. 2008; Sato et al. 2004), later, additional
approaches have been used to analyse rice grains (GC-MS
on transgenic rice, (Zhou et al. 2008); 1D and 2D GC-MS
on brown rice, (Kusano et al. 2011); HSSE/GC-MS on rice
grains, (Grimm et al. 2011)). Only one metabolomics
study has so far been published on rice bran, but specific-
ally in the context of its use as a suitable starting material
for fermentation to produce health-promoting phyto-
chemicals (Ryan et al. 2011). Methods for the untargeted
analysis of rice grain volatile compounds, which are
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important in determining key phenotypic traits in fragrant
rices such as Basmati and Jasmine types, have also recently
been published (Boualaphanh et al. 2011a; Calingacion
et al. 2011; Verhoeven et al. 2011). GC-MS results have
revealed that rice fragrance (measured from extracts or
directly from head space) is created from a rich mix of a
wide range of chemically-diverse compounds (Bryant and
McClung 2011; Calingacion et al. 2011; Champagne et al.
2008). Many of these can be associated with positive fra-
grance traits, but others can be linked to off-flavour/nega-
tive traits. Advanced knowledge of both is essential when
we wish to design breeding programmes with increased
capability to select for nutritional quality. Using LC-MS,
(Heuberger et al. 2010) also revealed a vast richness in the
non-volatile metabolites, many of which could be asso-
ciated with nutritional value or potential health benefits.
In the most extensive integrated approach to date, Calin-

gacion et al., (2011) have used five complementary metabo-
lomics platforms (NMR, LC-MS, GC-MS, GC-TOF-MS
and ICP-MS) to gain a broad insight into minerals and
metabolites in polished rice grains. Three contrasting gen-
otypes were used in a proof of concept experiment, and it
was demonstrated that all platforms could readily distin-
guish each genotype. This indicates that irrespective of
analytical platform or group of metabolites studied, chem-
ical diversity is sufficient to enable genotype-specific pro-
files to be identified. This individuality in diversity is
presumably also the fundamental basis of the high discrim-
inatory potential of the human palette to distinguish rice
varieties after cooking, even when the grains come from
genetically closely related varieties (Calingacion et al. 2011;
Champagne et al. 2010). Of course, metabolic complexity
is, to a large extent, the reflection of complexity resulting
from genetic polymorphism. Our growing potential to ex-
ploit the sequence of the rice genome, in combination with
e.g. full genome transcriptomics, comprehensive SNP
genotyping and genome-wide association studies using
multi-platform metabolomics studies (Calingacion et al.
2011), is predicted to enable us to make unprecedented
steps in our quest to understand better the molecular basis
of rice metabolite profiles, and design tailor-made nutri-
tion-directed breeding strategies for specific rice varieties,
whole-grain and polished, to meet future nutritional needs.

New genotyping tools for defining the genetics of
nutritional quality
Over the last ten years, genotyping tools have advanced
immeasurably. Genome-wide genotyping has become al-
most routine, and now the current advances are increas-
ing the resolution and application of the technology to
rice exponentially (McCouch et al. 2002). Now, single
nucleotide polymorphisms (SNPs) are replacing most
genotyping techniques, and with new SNP techniques,
DNA from a single variety can be screened at many loci
in a single pass (Boualaphanh et al. 2011b; McCouch
et al. 2010).
Routine genotyping at 384 SNP loci is currently pos-

sible for rice, for both indica and japonica subspecies
(Boualaphanh et al. 2011b; Wright et al. 2010). However,
just as genotyping at 384 loci has become routine, the
number of loci on newly developed chips has risen to
44000, and is soon to reach 1, 000,000 loci (Tung et al.
2011). As this rich collection of SNPs are discovered, the
genotyping can be used to develop mapping populations
rapidly (Boualaphanh et al. 2011b), or used to associate
with phenotype data (Calingacion et al. 2011), or a par-
ticular set of SNPs can be selected and used for specific
genotyping in a breeding program (Chen et al. 2011).
Once phenotyping tools can identify compounds and

structures that offer nutritional benefit, the new geno-
typing tools offer the opportunity for rapid discovery of
the genes responsible for the phenotype. Such genetic
knowledge can then be delivered to breeding programs
to enable genetic selection for compounds, structures
and traits that offer nutritional benefit.

Consumer acceptance of nutritionally enhanced rice
Consumers have eaten particular varieties for many gen-
erations in the belief that they give nutritional value. For
example, rice in India with red bran is marketed and
prescribed by Ayurvedic practioners for its health bene-
fits such as controlling hypertension and diabetes (Ahuja
et al. 2008). In Laos, specific varieties are consumed by
post-partum women (Bounphanousay 2007). Belief in
these effects on health has been upheld for many genera-
tions, but the mechanisms through which they act are not
clear. Any rice that is sold unpolished in the U.S. can le-
gally be marketed with the following FDA-approved health
claim: “Diets rich in whole-grain foods and other plant
foods and low in total fat, saturated fat, and cholesterol
may reduce the risk of heart disease and some cancers”
(FDA 1999). However, labels are not specific, mechanisms
are not well understood, impact on health is not quanti-
fied, and consumption of whole-grain rice is very low in
developing countries. The purpose of the present review is
to create awareness of the nutritional potential of rice;
identify current progress with developing varieties for spe-
cific issues of malnutrition and chronic disease, through
the understanding the constituents of the rice grain, and
bringing new science to bear; and identifying new oppor-
tunities to tap into the diversity of rice and identify or de-
velop additional nutritionally enhanced varieties. However,
there are a number of issues to consider when marketing
such varieties to policy makers, farmers and most import-
antly, consumers.
Some countries have very strict food labeling regula-

tions, such as in Japan, while others have relatively lax
laws, as in China (Hawkes 2004). In regions of the world
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with strict regulations, marketing rice as possessing a
certain level of a nutrient will require that the levels are
documented through laboratory testing. Labeling rice
with a health claim will be particularly challenging since
countries have diverse requirements for making such
claims, and consumers believe claims to varying degrees
(Shimizu 2011). Furthermore, in most regions of the
world, cultivars with an enhanced nutrition profiles,
such as those with elevated Zn, will need to be segre-
gated from those without the trait so the impact is not
diluted. Segregation of particular cultivars is known as
identity preservation (IP) across the crop world. IP
requires cultivars to be harvested, stored, and marketed
separately (Sundstrom et al. 2002). These systems specify
that particular standards be upheld, records kept, and
testing be performed. In other situations IP is used to
enable consumers to choose products without a particu-
lar trait, as in the case of genetically modified (GM)
crops. The European Union, Japan, Australia and other
regions of the world have laws requiring the labeling of
GM foods (Huffman 2004). Thus, IP will likely be
required for a nutritionally enhanced rice to be sold
whether it is created using traditional plant breeding
techniques, mutation breeding, or genetic engineering.
Bringing a nutritionally enhanced rice to a consumer or

a patient has its own set of obstacles. The first of these is
that it is necessary to meet some of the nutritional chal-
lenges using the tools of transgenic technology. Golden
rice was developed with genes from another species
(maize) (Grusak 2005), but the high Fe rice that best meets
nutritional targets was developed using a transgenic tech-
nique to enable a gene found in all rice varieties, that usu-
ally expresses in the roots and shoots, to express in the
grain as well (Johnson et al. 2011). These are different
degrees of genetic modification, but will that influence
consumer choice? The development of transgenic food
products has been highly controversial, in spite of the fact
that there was no other way to create grains of rice with
nutritionally useful levels of iron or rice grains containing
β-carotene. Generally consumer skepticism is focused
around questions of unknown environmental and health
consequences of growing or consuming the transgenic
products (Curtis et al. 2004). The two transgenic products
described here have been developed with the specific hu-
manitarian objective of improving the health of the poor-
est people. However, consumers and policy makers have
every right to ask questions, and should do so. As more
trials are undertaken in different locations and in target
populations, science will begin to provide the answers to
the critical questions, which then will enable policy
makers and consumers to make informed decisions.
A second obstacle to consumer acceptance concerns the

capacity of science to quantify the nutritional impact of
the nutritionally valuable rices, especially with regard to
chronic diseases, and to communicate that effectively to
the medical community. At present, studies investigating
the impact of nutritionally enhanced rice in preventing
chronic disease, or developing therapeutic strategies for
controlling these, are lacking, and specific dietary recom-
mendations are not focal points in the management of
chronic diseases by the medical community.
Presently, the medical community primarily practices

evidence-based medicine, which aims to apply the best
available evidence gained from the scientific method to
clinical decision-making. Quantifiable, evidence-based
data based on extensive research would be invaluable for
encouraging more medical practitioners to combine
dietary recommendations with medicinal treatment as
their primary strategy in managing patients with chronic
diseases. However current limitations to this are the
identification of grain constituents with health benefits,
and the existence of rapid and accurate methods that en-
able data to be gathered to quantify medical impact.
Techniques for testing nutritional claims from rice re-
search would provide the conduit for collaboration be-
tween the medical community and rice scientists to
enable rice varieties to be developed to provide solutions
to chronic diseases.

Conclusions
Prioritising investment into identifying the biological
causes underlying associations between rice consump-
tion and decreased risk factors for chronic diseases
would have significant and long-term impact on global
nutritional challenges that have their greatest effect in
developing countries. Technologies are advancing at
rates rapid enough to make scientific progress in these
areas, and doing so would lead to both nutritional and
economic benefit in every rice-consuming country. The
outputs from such research programs must be integrated
with other efforts aiming to deliver climate-ready var-
ieties that resist the challenges of the changing environ-
ment, and varieties that are acceptable to consumers.
Rice that does not meet the needs of consumers in terms
of physical and sensory properties will not be successful
in the marketplace, but once research programs are
resourced to understand the linkages between chemicals
in rice and human health, and are able to deliver solid
nutritional information to the medical community, con-
sumers might be able to be persuaded to increase their
consumption of wholegrain or pregerminated rice.
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