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Abstract

Background: Quantitative reverse transcription PCR (qRT-PCR) has been routinely used to quantify gene expression
level. This technique determines the expression of a target gene by comparison to an internal control gene
uniformly expressed among the samples analyzed. The reproducibility and reliability of the results depend heavily
on the reference genes used. To achieve successful gene expression analyses for drought tolerance studies in rice,
reference gene selection should be based on consistency in expression across variables. We aimed to provide
reference genes that would be consistent across different tissues, developmental stages and genotypes of rice and
hence improve the quality of data in qRT-PCR analysis.

Findings: Ten candidate reference genes were screened from four ubiquitously expressed gene families by
analyzing public microarray data sets that included profiles of multiple organs, developmental stages, and water
availability status in rice. These genes were evaluated through qRT-PCR experiments with a rigorous statistical
analysis to determine the best reference genes. A ubiquitin isogene showed the best gene expression stability as a
single reference gene, while a 3-gene combination of another ubiquitin and two cyclophilin isogenes was the best
reference gene combination. Comparison between the qRT-PCR and in-house microarray data on roots
demonstrated reliability of the identified reference genes to monitor the differential expression of drought-related
candidate genes.

Conclusions: Specific isogenes from among the regularly used gene families were identified for use in qRT-PCR-
based analyses for gene expression in studies on drought tolerance in rice. These were stable across variables of
treatment, genotype, tissue and growth stage. A single gene and/or a three gene set analysis is recommended,
based on the resources available.
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Findings
Real-time quantitative reverse transcription PCR (qRT-
PCR) is widely used to assess the status of gene expression
under variable developmental and environmental condi-
tions (Gachon et al. 2004). Variables for transgene expres-
sion (Kohli et al. 2006) also necessitate its analysis by
qRT-PCR (Trijatmiko et al. 2016). For the results to be
dependable, selection of reference genes that express
consistently across the tissue, genotype and develop-
mental stage variables is critical (Wong and Medrano
2005; Guénin et al. 2009). Unless a stably expressed
gene is used as a reference, expression level in samples
are overestimated or underestimated, and identification of
differential expressions is prone to errors. In general, ubi-
quitously expressed genes that would maintain consistent
expression are used. However, these have not been thor-
oughly tested to be so under different variables. Also, the
reference genes generally belong to a gene family and iso-
genes can be rather variably expressed in different tissues
of different genotypes.
In rice, several housekeeping genes have been exam-

ined on various samples under different conditions but
mostly at seedling stage (Kim et al. 2003; Jain et al.
2006; Narsai et al. 2010; Moraes et al. 2015). Consist-
ent reference genes for rice under drought stress at
both, the seedling and reproductive stage are not
known. Earlier studies with genes such as the actin,
ubiquitin, ubiquitin-conjugating enzyme E2 and
eukaryotic elongation factor 1α (Moumeni et al. 2011;
Sharoni et al. 2012; Minh-Thu et al. 2013; Campo et al.
2014) suffer from lack of information on isogene
analysis.
An accurate gene expression analysis is central to

obtaining insights on adaptation mechanisms to
drought stress. Plants regulate the expression of many
genes to adapt to water deficit conditions (Shinozaki
and Yamaguchi-Shinozaki 2007). A number of drought
stress responsive genes were analyzed (Deyholos 2010;
Alter et al. 2015), and genes contributing to drought tol-
erance were suggested (Bhatnagar-Mathur et al. 2008;
Osakabe et al. 2014). Drought transcriptome studies in
various plant species revealed a largely common re-
sponse involving similar pathways and genes but again
these were largely confined to studies on leaves at seed-
ling stage drought in genotypes known as models for
drought tolerance (Lenka et al. 2011; Minh-Thu et al.
2013).
We have redressed the situation by identifying refer-

ence genes for relative quantification of transcripts in
rice under drought studies, taking into consideration
tissues, genotypes and growth stages. Candidate refer-
ence genes were pre-screened from public transcrip-
tome microarray datasets by a novel systematic
strategy, and then experimental evaluation of the

candidates was conducted using qRT-PCR and a rigor-
ous statistical analysis. The best reference genes identi-
fied were validated comparatively between qRT-PCR
and microarray data.
In principle, reference genes should be independent of

any biological response to the treatment under study e.g.
drought stress in our case. Good reference genes can be
screened from large-scale transcriptome data but the ef-
fectiveness of this approach would depend on the depth
and breadth of the transcriptome experiments, which al-
most never simultaneously addressed the variables of
treatment, genotype, growth stage and tissues. Thus, in
the publicly available data sets, each of which lack ad-
dressing one or more of these variables, we focused on
the four gene families i.e. glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), actin, ubiquitin and cyclophilin,
that have been recurrently used as reference genes in
various organisms. Any additional potential candidate
reference genes or gene families would have to be vali-
dated in various organisms. Hence, there was value in
our conservative approach of considering isogene ex-
pression differences within and among the tried and
tested four gene families, under the variables of treat-
ment, genotype, tissue and growth stage. Moreover, since
reference gene combinations have been recommended
(Vandesompele et al. 2002), our effort was to come up
with a combination of genes expressed stably under dif-
ferent variables to provide a strict and dependable refer-
ence parameter.
Seven GAPDH isogenes, 13 actin isogenes, 31 ubi-

quitin isogenes, and 23 cyclophilin isogenes were
evaluated based on an expression stability index cal-
culated with the scheme presented in Fig. 1. Micro-
array data from rice drought tolerance experiments
were used to calculate coefficient of variation (CV) of
genes, and the CV were then ranked in each gene
family (Additional file 1: Materials and Methods;
Additional file 2: Table S1). The microarray data were
comprised of 11 drought experiments in five different
platforms, including data in 10 different growth stages
(from vegetative to reproductive stage) and 13 differ-
ent genotypes (indica varieties: Dagad deshi, IR20,
IR64, DK 151, Bala, IR77298-14-1-2-B-10, IR77298-
14-1-2-B-13, IR77298-5-6-B-18, 1R77298-5-6-B-11, ja-
ponica varieties: Zhonghua 11, Azucena, and Nak-
dong). The rank was then converted into weighted
rank score (WRS), which reflects variety of samples
in each microarray data set (Additional file 1: Mate-
rials and Methods). Our analysis indicated differential
expression of isogenes of the four gene families under
one or more variables. Thus, based on the WRS
(Additional file 3: Table S2), we selected one GAPDH
isogene and one actin isogene that represented ex-
tremely stable expression, five ubiquitin isogenes that
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were moderately stable, and three cyclophilin isogenes
that were also moderately stable (Additional file 4:
Table S3). The expression patterns of the genes se-
lected and their WRS in each data set are shown in
Fig. 2 and Additional file 5: Figure S1, respectively.
The selected candidate reference genes were evalu-

ated by qRT-PCR with the ΔCt approach. Multiple
tissue samples (leaves and roots) from two genotypes
(IR64 and WAB 56–104), two growth stages (IR64 in
seedling stage and WAB 56–104 in reproductive
stage), and stressed at different water availabilities
were used for the analysis (Additional file 2). The
qRT-PCR products were verified via dissociation curve
experiments to see a single product peak for all (Add-
itional file 6: Figure S2). Single genes as well as dif-
ferent gene combinations (up to four genes) were

assessed for their expression stability via their mean
ΔCt standard deviation (SD). The top 10 results of
single, 2-, 3- and 4-gene categories were tabulated
(Table 1). The best single, 2-, 3- and 4-gene refer-
ences represented constant expression levels generally,
but small differences at expression stability were ob-
served (Fig. 3).
A ubiquitin isogene (LOC_Os03g13170) represented

the highest stability as a single gene reference. Among
the 2-gene combinations, the pair of a GAPDH
(LOC_Os08g03290) and another ubiquitin isogene
(LOC_Os08g19830) had the best expression stability.
Among the 3-gene combinations, two cyclophilin genes
(LOC_Os07g29390, LOC_Os06g49480) and yet another
ubiquitin isogene (LOC_Os02g06640) showed the best ex-
pression stability. Finally, among the 4-gene combinations,

Fig. 1 Schematic workflow used for reference gene identification. Expression of genes from four gene families were mined from five different
microarray datasets (definitions of the datasets shown in Additional file 2: Table S1). Determination of each gene’s WRS is described in the Materials
and Methods (Additional file 1). Ten candidate genes were selected based on their WRS and tested in qRT-PCR. The stabilities of the genes were then
assessed using the ΔCt approach. The most reliable reference genes were validated by the comparison of qRT-PCR and microarray data
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the set of a cyclophilin (LOC_Os02g02890) the GAPDH
(LOC_Os08g03290) and two ubiquitin isogenes
(LOC_Os05g06770 and LOC_Os08g19830) was the most
stable reference (Table 1). The reason why different ubi-
quitin isogenes were extracted in the above listed best ref-
erence genes could be explained by the idea that most
ubiquitously expressed genes showed divergent expres-
sions and a combination of multiple genes minimized
such divergence.
In order to validate the best reference gene/combina-

tions above, qRT-PCR results from our previous study
(Dixit et al. 2015) were recomputed. Gene expression
was quantified using the ΔΔCt method (Livak and
Schmittgen 2001). The expression values were com-
pared to our microarray data (Dixit et al. 2015;
GSE78504; http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE78504). Expressions of eight drought
tolerance candidate genes identified in qDTY12.1 were
analyzed in roots at seedling stage. We observed a def-
inite trend between the fold-change of expression
values in all the four sets of reference genes (Fig. 4).

Six out of the 8 genes were observed to have concord-
ance between the qRT-PCR and microarray results
after omitting the two outlier data points to reduce
their effect on the analysis. The most reliable reference
was determined via the goodness of fit to a “y = x” line.
This was measured by calculating the residual variance
(RV) for each plot, with the RV value being inversely
proportional to the concordance between the qRT-
PCR and microarray data. Using a single gene refer-
ence resulted in an RV of 1.48. The 2-gene combin-
ation yielded 1.20; the 3-gene combination, 1.17, and
the 4-gene combination, 1.31 (Fig. 4). These results in-
dicated that the degrees of reliability when compared
to microarray data were similar in each of the four ref-
erence gene approach, but the 3-gene combination of-
fered the best result.
A number of publications exist about particular genes,

and various statistical treatments, which can lead to de-
pendable qRT-PCR results (Kozera and Rapacz 2013).
Statistical veracity in assessing gene expression by qRT-
PCR is an important component of the technique

A B

C D

Fig. 2 WRS of the reference gene candidates. Radar chart displays the WRS of each reference gene candidate in the five datasets (A to E in each
graph). Vertices of the chart represent percentage scores of WRS calculated for genes in each gene family. The highest WRS was adjusted to 100 %. a
GAPDH, b actin, c ubiquitin and d cyclophilin
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Table 1 Expression stability of candidate reference genes

Classa1 Reference gene
Mean
SD of
ΔCt

Rank on expression stability

in classb2 in totalc3

Single

LOC_Os03g13170 0.871 1 305

LOC_Os05g06770 0.929 2 336

LOC_Os08g03290 0.942 3 342

LOC_Os06g49480 1.073 4 366

LOC_Os08g19830 1.093 5 368

LOC_Os07g29390 1.159 6 373

LOC_Os11g06390 1.332 7 381

LOC_Os04g53620 1.561 8 382

LOC_Os02g06640 1.795 9 384

LOC_Os02g02890 1.862 10 385

2-gene

LOC_Os08g03290/LOC_Os08g19830 0.714 1 102

LOC_Os11g06390/LOC_Os08g03290 0.760 2 183

LOC_Os08g03290/LOC_Os05g06770 0.760 3 185

LOC_Os08g03290/LOC_Os03g13170 0.773 4 203

LOC_Os06g49480/LOC_Os08g03290 0.786 5 223

LOC_Os07g29390/LOC_Os05g06770 0.795 6 239

LOC_Os07g29390/LOC_Os03g13170 0.827 7 270

LOC_Os04g53620/LOC_Os08g19830 0.834 8 274

LOC_Os06g49480/LOC_Os02g06640 0.844 9 281

LOC_Os03g13170/LOC_Os08g19830 0.856 10 290

3-gene

LOC_Os07g29390/LOC_Os06g49480 /LOC_Os02g06640 0.684 1 49

LOC_Os06g49480/LOC_Os02g06640 /LOC_Os03g13170 0.686 2 54

LOC_Os08g03290/LOC_Os05g06770 /LOC_Os08g19830 0.697 3 71

LOC_Os02g02890/LOC_Os03g13170 /LOC_Os08g19830 0.698 4 75

LOC_Os06g49480/LOC_Os08g03290 /LOC_Os02g06640 0.699 5 77

LOC_Os06g49480/LOC_Os02g06640 /LOC_Os05g06770 0.702 6 80

LOC_Os07g29390/LOC_Os02g06640 /LOC_Os05g06770 0.705 7 86

LOC_Os02g06640/LOC_Os03g13170 /LOC_Os05g06770 0.708 8 88

LOC_Os02g02890/LOC_Os05g06770 /LOC_Os08g19830 0.708 9 89

LOC_Os08g03290/LOC_Os03g13170 /LOC_Os08g19830 0.708 10 91

4-gene

LOC_Os02g02890/LOC_Os08g03290 /LOC_Os05g06770/LOC_Os08g19830 0.618 1 1

LOC_Os02g02890/LOC_Os08g03290 /LOC_Os03g13170/LOC_Os08g19830 0.621 2 2

LOC_Os07g29390/LOC_Os06g49480 /LOC_Os02g06640/LOC_Os05g06770 0.622 3 3

LOC_Os11g06390/LOC_Os02g02890 /LOC_Os06g49480/LOC_Os08g03290 0.626 4 4

LOC_Os07g29390/LOC_Os06g49480 /LOC_Os02g06640/LOC_Os03g13170 0.627 5 5

LOC_Os02g02890/LOC_Os06g49480 /LOC_Os08g03290/LOC_Os08g19830 0.627 6 6

LOC_Os07g29390/LOC_Os02g06640 /LOC_Os03g13170/LOC_Os05g06770 0.630 7 7

LOC_Os11g06390/LOC_Os02g02890 /LOC_Os08g03290/LOC_Os03g13170 0.631 8 8

LOC_Os11g06390/LOC_Os02g02890 /LOC_Os08g03290/LOC_Os05g06770 0.634 9 9

LOC_Os07g29390/LOC_Os06g49480 /LOC_Os08g03290/LOC_Os02g06640 0.639 10 10
a1 Category of reference genes
b2 Rank in the same number of reference genes
c3 Rank among all the reference genes tested
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Fig. 3 Gene expression patterns of the best different gene/gene combinations. Relative expression level was determined by the 10-gene reference
and normalized by the roots of IR64 under well-watered condition. X-axis shows the different samples, and Y-axis shows the expression in log2 scale.
Error bar represents the standard error for each data point (n = 3). R: roots, S: shoots, L: flag leaves

A B

C D

Fig. 4 Comparison of qRT-PCR and microarray data of candidate genes from qDTY12.1. Each scatterplot represents a comparison of the qRT-PCR results
of the 6 candidate genes normalized using different reference gene combinations. The X-axis displays the fold-change of expression values from
control to stressed conditions from the microarray data, while the Y-axis displays the fold-change of expression values from control to stressed
conditions in the qRT-PCR. a Single reference gene, b 2-reference gene combination, c 3-reference gene combination, d 4-reference gene
combination. The RV for each graph was shown at the bottom right corner of each graph. The values for the X and Y- axes are shown in log2 scale
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(Vandesompele et al. 2002; Silver et al. 2006). These
methods suggested the superiority of multiple refer-
ence genes-based analysis to improve qRT-PCR accur-
acy, and recently Campo et al. (2014) applied a
combination of reference genes to monitor dependable
expression of their target genes. Utilization of multiple
reference genes is a way to relieve the effect of expres-
sion variability of single reference genes (Vandesom-
pele et al. 2002). A single reference gene tends to show
higher expression variability due to a number of bio-
logical factors, but additional reference genes, which
are differentially dependent on those factors, could
cancel such effects. In this study, we used different
combinations of reference genes in order to determine
the most reliable gene combination. Based on the
mean SD of ΔCt, the expression stability of the refer-
ence increased as more reference genes were used
(Table 1). Notably, only the 2-gene and 4-gene combi-
nations have common genes between the different
numbers of reference genes used. On the other hand,
some single reference genes showed low expression
stability. These results indicated the necessity of ap-
propriate reference gene selection for more accurate
analysis of gene expression.
Several statistical algorithms have been applied to val-

idate reference genes in plants (Gue´nin et al. 2009; Saha
and Blumwald 2014). The algorithms can be classified
into two categories: one evaluates absolute Ct values
among reference genes such as CV and one-way
ANOVA; the other measures pair wise variations of Ct
values among genes such as geNorm and the ΔCt ap-
proach. The first strategy is robust when mRNA con-
tent per total RNA is identical among samples
compared, but fails when it differs. The second strategy
overcomes this shortcoming, although the estimated
gene expression stabilities may include some errors
(Guenin et al. 2009). Application of the ΔCt approach
pointed to LOC_Os03g13170 as the most stable refer-
ence gene, in accordance with the results from geNorm
(data not shown). The reliability of the best reference
gene was validated by comparison between the qRT-
PCR and the microarray result (Fig. 4).
Jain et al. (2006) documented a ubiquitin (UBQ5) and

eEF-1α as the best reference genes to be used. Moraes et
al. (2015) reported another ubiquitin (UBQ10) as the
best reference. In the present study, another ubiquitin
(LOC_Os03g13170) was observed to be the best single
reference. However, multiple reference genes showed
higher expression stabilities and higher reliability. The
best reference gene combinations found in this study, to
our knowledge, are not reported yet. These combina-
tions were discovered by exhausting all possible combi-
nations of the candidate reference genes. The best
single reference gene was not included in the most

stable gene combinations (Table 1). As such, it should
not be assumed that combining other genes to a rela-
tively stable reference will automatically yield a better
reference.
In conclusion, we identified reference genes for rela-

tive quantification of transcript across rice samples
under drought conditions, according to their broad ex-
pression stability under different variables. Our study
indicated that the 3-reference gene combination was
the most reliable. Most importantly, some isogenes we
identified as broadly stable were different from the
ones commonly used as reference genes. This study
provides a basis for quantifying gene expression with
high accuracy, leading to identification of drought reg-
ulated genes, and further leading to better understand-
ing of drought tolerance mechanisms in plants. The
identified reference genes are useful to gain insights
into regulation of candidate genes against drought
stress in rice. In addition, we present an efficient
method for screening reference genes and their
combinations.
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