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Abstract

seed shattering.

Agrobacterium-mediated transformation

Background: Rice seed shattering is an important domestication syndrome encoded by a gene named as SH4. The
coding region of SH4 has been well studied regarding its function and roles in evolution. However, its promoter
has not been identified, which limited our understanding of the detailed regulatory mechanisms of this gene. It is
therefore critical to characterize the promoter and study its expression pattern.

Results: We analyzed the 5" upstream sequences of this gene and identified a ~2.6 kb fragment with typical promoter
features, which was designated as pSH4. The promoter contained a number of cis-acting elements related to abscisic
acid (ABA) and a CpG island that were characteristics of multiple tissue-specific expression. We isolated and ligated
pSH4 to the B-glucuronidase (GUS) reporter gene, and transformed it into a japonica rice cultivar to determine the
multiple expression pattern of SH4. Histochemical location and fluorescence analyses of GUS activity of transgenic
plants indicated multiple tissue-specific expression of pSH4 in the seed-pedicel junction region of mature panicles
(with highest level), stems, coleoptiles of germinated seeds, and scutella of mature seeds.

Conclusions: The multiple tissue-specific expression pSH4 is categorized as a spatiotemporal promoter that drives
the expression of the SH4 gene in different rice tissues, in addition to the seed-pedicel junction region. Our findings
suggest that SH4 may have additional functions in the growth and development of rice, apart from its major role in
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Background

A promoter is a sequence of DNA that regulates gene
transcription. In plant genetic engineering, promoters
have been widely used to achieve specific expression of
transgenes for crop improvement and gene function
analysis (Odell et al. 1985; Nandi et al. 2002). Based on
the types of gene expression regulation, promoters are
divided into three categories: (i) constitutive promoters
that are active constantly in most or all tissues; (ii)
spatiotemporal promoters that have development-
stage-specific or tissue-specific activity; and (iii) inducible
promoters that are regulated by external physical or
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chemical signals (Ye et al. 2012). The growth and
development of plants is controlled by specific
expression of certain genes at an appropriate time, in
a particular tissue, and at appropriate abundance
(Wray et al. 2003). Through interaction with transcription
factors, a promoter regulates gene expression at a specific
concentration within cells or tissues under particular
environmental conditions (Smale 2001). In the last few
years, it is popular to discover a gene characterized
tissue-specific expression with a special promoter, for
analyzing the growth and development of an import-
ant trait and applying in plant genetic engineering
(Bommert et al. 2005). Many tissue-specific promoters
restrictedly expressed in particular cells, tissues, organs, or
developmental stages have been identified (Hwang et al.
2002; Gupta et al. 2007). Obviously, the tissue-specific
expression of a gene is governed by the combined action
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of cis-acting elements in its promoter region, as well as
different nuclear proteins interacting with the elements.
Therefore, the cis-acting elements function as activators
or repressors in regulating leaf-, stem-, root-, and panicle-
specific gene expression (Cai et al. 2007).

Abscission is a programmed organ-detachment process,
in which plant parts such as fruits, seeds, and leaflets
separate from their mother plants in response to develop-
mental cues to guarantee efficient dispersal or propagation
of the plants (Patterson 2001). The loss of natural fruit
abscission or seeds shatter is one of the key change of
agricultural traits in domestication of cereals, as a result of
selection by humans (Sang and Ge 2007). Asian cultivated
rice (Oryza sativa L.) is one of the world most important
cereal crops, and shows diverse degrees of seed shattering
from relative persistence to easy-shattering in different
cultivars (Konishi et al. 2006). Commonly, wild and weedy
relatives of rice have a strong seed-shattering ability
(Thurber et al. 2011). Seed shattering in rice depends
on the proper formation and subsequent degradation
of an abscission zone, mostly encompassing one layer
of small, thin-walled densely cytoplasmic cells, between
seeds and pedicels (Lewis et al. 2006; Thurber et al. 2011).
Through genetic analyses of rice cultivars and wild pro-
genitors, several quantitative trait loci (QTL) associated
with seed shattering have been identified, including SH4,
qSH1, OsCPL1, and SHAT1 (Li et al. 2006a; Konishi et al.
2006; Ji et al. 2010; Zhou et al. 2012).

Li et al. (2006b) fine-mapped and cloned the SH4 gene
based on the crosses between a rice cultivar CL16
(O. sativa subsp. indica) and an annual common wild
rice line IRGC80470 (O. nivara). They considered
that the SH4 gene explained 69% of variation in
seed-shattering. A single non-synonymous substitution
(G to T) in the Myb3 DNA-binding domain of the
gene results in the incomplete development and partial
dysfunction of the abscission zone where the separation of
a seed from the mother plant occurs, leading to reduced
seed shattering of cultivated rice (Li et al. 2006b), although
recent studies inferred that this gene may not necessarily
play a key role in the early domestication of rice
(Thurber et al. 2010; Zhu et al. 2012). The SH4 gene
is the first cloned gene that governs rice seed shattering
and is the most significant seed-shattering gene for rice
domestication (Doebley 2006).

A previous study identified the specific expression
feature of SH4 mRNA at the seed-pedicel junction that
included the abscission zone, and a trend of increased
gene expression at the seed maturity (Li et al. 2006b).
However, little was known about the regulatory sequence
of SH4 although a previous complementation test implied
that a ~2.6 kb upstream region of SH4 might have the
regulatory function, affecting seed shattering in rice
(Li et al. 2006b). Hence, the function of SH4 promoter,
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particularly the tissue-specific expression pattern, needs
further investigation. To characterize the ~2.6-kb
fragment that includes SH4’s promoter (Li et al. 2006b)
for its cis-acting elements, and its expression pattern in
different tissues may provide insights into the regulatory
mechanisms of seed shattering in rice.

A number of promoters for abscission-related genes
has been isolated and their expression pattern was
investigated in different plants by the B-glucuronidase
(GUS) fusion system (Jefferson et al. 1987), such as
oilseed rape and Arabidopsis (Gonzalez-Carranza et al.
2002; Farage-Barhom et al. 2008). Yet, the promoter of
seed-shattering genes in rice has not been well studied.
With the completion of rice total genome sequencing
(Kawahara et al. 2013), it becomes very convenient to study
the regulatory region of genes crucial for plant growth and
development, including that of seed-shattering genes.
Here, we report the isolation of the promoter of rice
seed-shattering gene SH4, from a japonica rice cultivar,
Nipponbare. The objectives of this study were to: (i)
characterize the ~2.6-kb fragment for its cis-acting
elements; (ii) examine the tissue-specific expression
pattern and activity of the identified promoter. To achieve
the objectives, we produced transgenic rice plants contain-
ing a chimeric gene construction with the potential
promoter region of SH4 fused with the GUS gene, and
examined the expression pattern of GUS activity. The
generated knowledge will facilitate our understanding of
the possible multiple tissue-specific expression of the rice
seed-shattering gene SH4 regulated by its promoter.

Results

Identifying a promoter upstream of the rice
seed-shattering gene SH4

Based on the genomic DNA sequence of japonica
cultivar Nipponbare from the rice genome annotation
database (RGAR-7), we identified a ~2.6 kb fragment in
the intergenic region upstream of the seed-shattering gene
SH4. Sequence analysis of this fragment based on the
PLACE database indicated the basal regulatory elements
for a promoter, TATA-box and CAAT-box that were close
to the seed-shattering gene SH#4 at the position -751
and -801, respectively (Figure 1). As usual, the tran-
scriptional start site (TSS) found at 144 bp upstream
of translation start-codon ATG of SH4 was deter-
mined as +1, based on the PlantPAN database. The
results demonstrated the likelihood of the isolated
fragment that had the promoter function. This potential
promoter was designated as pSH4. In addition, a CpG
island involved in gene transcription was detected at the
position from -377 to +150. Multiple cis-acting ele-
ments were also detected in pSH4 (Table 1). The charac-
teristics of pSH4 suggested its possible function for the
tissue-specific expression of SH4.
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Figure 1 Structure of SH4 gene including a part of its coding region and 5’ upstream region. White box: the 5'-untranslated region (UTR);
black boxes: exons; striped box: intron. The direction and initial of transcription is indicated by an arrow. The vertical bars indicate the putative
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ream or downstream from the transcription start site.

Obtaining transgenic rice plants containing pSH4-GUS
The pSH4 fragment with 2,617-bp was isolated from the
genome of Nipponbare. The recombinant binary vector,
pSH4-GUS was constructed and transformed into
Nipponbare. More than 50 transgenic plants (T,) were
obtained. Of these transgenic plants, five well-developed
plants were selected and subjected to produce later
generations (T;_3) through self-pollination. After molecular
confirmation with PCR identification (Figure 2) and
Southern blot analysis (Figure 3), three transgenic
plant lines (T-20, T-25 and T-37) containing single-copy
and homozygous transgene (pSH4) were selected for
further analysis to test the function of the promoter for its
tissue-specific expression.

Tissue-specific expression patterns of the promoter pSH4
Our results showed the tissue-specific expression of
GUS regulated by pSH4 in T,-Tj transgenic plants
(Figure 4A-H). GUS staining was observed in the
seed-pedicel junction region (where seeds separated
from mother plants) of mature panicles (30 DAF) in
the histochemical stained pSH4-GUS transgenic plants
(T,, Figure 4A). These results confirmed pSH4 was the
promoter of the seed-shattering gene SH4. Similarly, GUS
staining was also detected in stems (T,, Figure 4C) and
coleoptile of germinated seeds (T3, Figure 4E). However,
only weak GUS staining was observed in the scutella of
embryos of mature seeds, although no staining was
found in endosperms (T3, Figure 4G). GUS staining

Table 1 The cis-acting elements related to tissue-specific expression identified in pSH4 promoter

Name Motif Position Putative regulatory function (references in parentheses)
TRABI1 CAACGTGTGAC -1775 Binding site for ABA signal transaction gene TRABT (Hobo et al. 1999).
0OSBz8 ACGTGTGCTCCATC  -963 Binding site for ABA signal transaction gene OSBZ8 (Nakagawa et al. 1996).
ACGTATERD1 ACGT —1773, —=1435, —=1037, ABRE required for dehydration stress and dark-induced senescence
-961, —846, —819, —679 (Simpson et al. 2003).
DPBFCOREDCDC3  ACACNNG —726,-13 Binding core sequence found in the carrot embryo-specific Dc3 gene
promoter, and induced by ABA (Kim et al. 1997).
RYREPEATVFLEB4 CATGCATG —429 RY repeat motif, related to ABA-regulated gene expression during late
embryo-genesis (Hobo et al. 1999).
MYBTAT WAACCA —1345, —1201, =75 MYB recognition site for dehydration-responsive gene and mediated
by ABA (Abe et al. 2003).
MYCATERD1 CATGTG —1252, -1221 MYC recognition sequence for early responsive to dehydration and
mediated by ABA (Simpson et al. 2003).
MYCCONSENSUSAT  CANNTG —1601, —1424, —1415, —=1369, MYC recognition site found in the promoters of the dehydration-responsive
—1339, =1252, =1221, -435  gene and mediated by ABA (Abe et al. 2003)
MYBGAHV TAACAAA —693 GARC involved in gibberellin signal pathway and sugar suppression
(Gubler et al. 1995).
WRKY710S TGAC —2062, —1934, —1845, A core of W-box, involved in gibberellin and ABA signaling pathways
—-1768, =1755, =869, =717 (Zhang et al. 2004).
AMYBOX1 TAACARA —693 Amylase box, conserved sequence found in the promoter of a-amylase
gene, regulating specific expression in germinating seeds and callus
(Hwang et al. 1998).
AMYBOX2 TATCCAT —1794 Amylase box, conserved sequence found in the promoter of a-amylase
gene, regulating specific expression in germinating seeds and callus
(Hwang et al. 1998).
GATABOX GATA —1887, —1479, —1236, Conserved in light-regulated and tissue-specific expression genes

—-813, =503

(Lam and Chua 1989).

N = Any base;R=GorA;Y=CorT; W=AorT.
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Figure 2 Results of PCR products amplified by gusAF/gusAR primers for identifying transgenic plants. The expected size of PCR products
is 662 bp. Track 1: 355-GUS plant (positive control); track 2-6: pSH4-GUS transgenic plants; track 7: Nipponbare (negative control); track 8: water

was not observed in roots, leaves, and flowers at different
developmental stages of the transgenic plants. Differently,
GUS staining was observed in all tissues (including roots,
stems, leaves, panicles and seeds) of the positive control,
35S-GUS transgenic plants (data not shown), suggesting
the effectiveness of GUS staining. In contrast, no
GUS staining was observed in all corresponding tissues
of the negative control, non-transgenic Nipponbare
(Figure 4B, D, F, and H).

In addition, our results demonstrated the lower expres-
sion of pSH4 than that of 35S promoter in tested tissues
of the transgenic plants. This was reflected from the GUS
quantitative assays that showed a significantly reduced

Figure 3 Southern blot analysis of pSH4-GUS transgenic plants.
Track 1: Nipponbare (negative control); track 2—-4: pSH4-GUS transgenic
lines (T-37, T-25, and T-20, respectively); track 5: pSH4-GUS plasmid
(positive control).

GUS staining level (to 27%-55%) in different tissues of
pSH4-GUS transgenic plants (Figure 5). GUS expression
level in the seed-pedicel junction region of pSH4-GUS
transgenic plants was only an average of ~55% that of
35S-GUS transgenic plants. Even more reduced GUS
staining levels were detected in stems, coleoptile of
germinated seeds, and mature embryos (to ~27%, ~29%
and ~35%, respectively) (Figure 5). The results suggested
the moderate expression strength of pSH4 although with
the highest level in the seed-pedicel junction region that
was associated with seed shattering.

Discussion

SH4 promoter and its multiple cis-acting elements

Based on the study of Li et al. (2006b) who suggested that a
2,640 bp fragment at the 5" upstream of the SH4 gene had
the function of regulating the expression of SH4, we iso-
lated a 2.6-kb fragment, ranging from the position -2,472
to +150, to study its multiple tissue-specific function as a
promoter. Sequence characterization involving the PLACE
and PlantPAN databases showed the basal regulatory
elements: the TATA-box and CAAT-box that are typical
elements for promoter function. Thus, this identified
promoter was named as pSH4. In addition, a CpG island
that is considered to be related to the tissue-specific
expression of a gene was also identified as a part of pSH4.
It is known that a gene regulated by a promoter usually
has multiple expression in two or more tissues, if a
CpG island presents in the 5 end of the promoter
(Ashikawa 2002). Given that the presence of a CpG
island in pSH4 is located at its 5" end, this promoter
is therefore expected to have the function to regulate
the SH4 gene expression in multiple tissues. Previous
studies of SH4 mostly focused on its gene-coding region
(Zhang et al. 2009; Thurber et al. 2010). However,
knowledge on the regulatory mechanism of this gene is
limited due to its unidentified promoter. The cloning of
pSH4 can largely expand the studies from the SH4
sequence and its function to the regulatory mechanisms
associated with this promoter. Further studies of the
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mature seeds, showing scutella (ST, indicated by arrows). Bar = Tmm.

Figure 4 GUS histochemical staining results in different tissues driven by pSH4. GUS-staining (blue dye) of different tissues in pSH4-GUS
transgenic plants (A, C, E, and G) and non-transgenic controls (B, D, F, and H). A and B: branches of panicle, showing the seed-pedicel junction
region (AL, indicated by arrows); C and D: stems (internodes); E and F: coleoptiles (CL, indicated by arrows) from germinated seeds; G and H: Dehusked

pSH4 polymorphisms of this domestication-related gene
may also increase our understanding of the adaptive
evolution of seed shattering in cultivated, weedy, and
wild rice samples (Zhu et al. 2012).

In addition, multiple cis-acting elements were identified
in pSH4 in this study. Usually, the type, number, and
position of cis-acting elements within a promoter region
can determine the spatiotemporal expression of the gene
regulated by a promoter (Cai et al. 2007). In this study,
different types of the cis-acting elements that are associ-
ated with tissue-specific gene expression were identified in
pSH4. For example, the abscisic acid response elements
(ABREs) that are involved in the abscisic acid (ABA)

hormone signal pathways were identified (Table 1).
These findings indicate that pSH4 is most likely asso-
ciated with the formation and activity of the abscis-
sion zone, which depends on the presence of ABA
(Gonzalez-Carranza et al. 1998; Li et al. 2006b). The
cloning of pSH4 provides opportunities to investigate
such regulatory mechanisms of ABA hormone signal
pathway in relation to the abscission zone that is closely
associated with seed shattering in rice.

Multiple tissue-specific expression pattern of pSH4
The GUS expression in this study revealed both by
histochemical and fluorescence assays in pSH4-GUS
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Figure 5 GUS fluorescent assay in different tissues of pSH4-GUS and 35S-GUS transgenic plants. SPJ: seed-pedicel junction region of
panicles; ST: stems; CGS: coleoptiles of germinated seeds; SMS: scutella of mature seeds. Differences were compared between non-transgenic control
(white columns) and pSH4-GUS transgenic lines (gray columns) or 355-GUS transgenic plants (black columns), respectively, using the independent
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transgenic plants indicated the multiple tissue-specific
expression pattern regulated by pSH4, as expected from
the characterization of this promoter. Therefore, the
pSH4 can be categorized as a spatiotemporal promoter.
This result suggested the additional function of SH4
besides its important role in seed shattering. The major
function of SH4 concerning seed shattering has been
illustrated by the analyses of RT-PCR and in-situ
hybridization in the seed-pedicel junction region (Li et al.
2006b, Zhou et al. 2012). We reconfirmed in this study that
the GUS reporter gene driven by pSH4 had the highest
level (~55%) of expression in the seed-pedicel junction
region of mature panicles, relative to that of driven by 35S
promoter. Given that the seed-pedicel junction region
includes the abscission zone (Thurber et al. 2011), the role
of SH4 in controlling seed shattering is probably related to
the formation and activity of the abscission zone during
seed ripening. Detailed studies involving pSH4 may
completely reveal the regulatory mechanisms of SH4 in
relation to the abscission-related traits in rice such as
seed shattering. The promoter regulated gene expres-
sion in the abscission zone can also serve as a bridge
to uncover new genes involved in abscission process
(Gonzalez-Carranza et al. 2012). In the case of practical
uses, the sequence of a seed-shattering promoter such as
pSH4 can be manipulated as the target of TALEN-based
gene editing for plant engineering (Li et al. 2012). For
example, genetically engineered rice with reduced seed
shattering by TALEN technique may mitigate the impact of
transgene flow from transgenic rice to weedy rice on the
seed dispersal of this weed (Gressel and Valverde 2009).

In addition to the seed-pedicel junction region of
mature panicles, the GUS activity driven by pSH4 was
also observed in other tissues of stems, coleoptiles of

germinated seeds and scutella of mature seeds with a
relative low level of expression. To the best of our
knowledge, the expression of SH4 in these tissues has
never been reported before. However, the function of
SH4 expression in these tissues remains unknown.
Interestingly, the expression pattern coincides with a
number of cis-acting elements presented in pSH4. For
example, a group of ABREs closely associated with the
ABA signal pathways, including two binding sites for ABA
signal transaction genes were identified (see Table 1). In
addition to its association with abscission, ABA signaling
can activate the expression of genes in seeds and other
vegetative tissues when they become dehydrated
(Finkelstein et al. 2002). In addition, ABA can also
inhibit the elongation of stems and induce transition from
seed maturation/dormancy to germination (Finkelstein et al.
2002; Krouk et al. 2011). Altogether, we expect that the
function of SH4 might be associated with ABA signaling
during the growth and development of rice plants at differ-
ent stages, such as seed germination, stem development,
and seed ripening, at which the outcome of SH4 expression
leads to seed shattering of weedy and wild rice.

Furthermore, the expression pattern of pSH4 in the
early stages of rice seed germination and seedling devel-
opment associated with the AMYBOX elements found
in pSH4 is similar to that of the rice a-amylase and
sucrose synthase genes, contributing to the mobilization of
carbon from source to sink during seed germination and
the subsequent stages of seedling development regulated by
sugar and hormone signals (Chéavez-Barcenas et al. 2000;
Chen et al. 2006). The linkage between our findings
and the case of a-amylase and sucrose synthase
genes indicates the similar function of SH4 in hormone
signal pathways.
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Conclusions

Sequence analyses and GUS activity determination
demonstrated the multiple-tissues expression of pSH4
in the seed-pedicel junction region, stems, coleoptiles
of germinated seeds, and scutella of mature seeds. This
tissue-specific expression pSH4 is categorized as a spatio-
temporal promoter. The multiple tissue-specific expression
pattern of pSH4 indicates that SH4 may play a diverse role
in the growth and development in rice, in addition to seed
shattering. Further investigation on the expression profile
of SH4, together with its upstream cis-acting elements in
pSH4 will provide deeper insights into the mechanisms of
its function in rice seed shattering, in addition to its poten-
tial roles in seed germination/dormancy and seedling
growth associated with hormone signals. Full understand-
ing of the mechanisms of seed-shattering related genes,
including SH4, will help to uncover the domestication
processes in rice, where seed shattering plays a key role.

Methods

Identifying and isolating the promoter of SH4

The sequences of an intergenic region in the 5’ upstream
of SH4 (LOC_Os04g57530.1) with physical location
between 34,233,221~34,235,832 base pairs (bp) on
chromosome 4 of a japonica rice cultivar Nipponbare
were downloaded from Rice Genome Annotation Release
7 (RGAR-7) at the Michigan State University (MSU)
(Kawahara et al. 2013) for promoter analysis. The
transcriptional start site of SH4 and CpG island in
the upstream region of SH4 were predicted using the
PlantPAN database (Plant Promoter Analysis Navigator;
Chang et al. 2008). The cis-acting elements of the
promoter were determined based on the PLACE
(Plant Cis-acting Regulatory DNA Elements; Higo et al.
1999) and PlantPAN databases.

For isolating the predicted promoter of SH4 (from pos-
ition -2467 to +150), genomic DNA was extracted from
young leaf tissues of Nipponbare seedling, using the
CTAB method (Doyle 1987). Based on the 5" upstream
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genomic sequences of SH4, a primer pair (psh4F-xba:
5'-AGAGGCTCTAGATTCGATTCCC-3" and psh4R-bgl:
5'-GCAGAGAGATCTGACATGCTCG-3") was designed
(the underlined letters indicated Xbal/BglII restriction sites)
to facilitate directional cloning of the promoter.

PCR amplification was carried out by initial denaturation
at 94°C for 4 min followed by 35 cycles of 94°C denatur-
ation for 30 s, 55°C annealing for 30 s, and 72°C elongation
for 40 s, and with a final extension of 72°C for 10 min. The
50 pl reaction mixture for the PCR consisted of an aliquot
of 50 ng template DNA, 1.5 mM MgCl,, 0.2 mM each of
dNTP, 1 unit of Tag DNA polymeraseand 10 pmol each of
the primers. PCR products were separated in 1% (w/v)
agarose gel and purified using the gel extraction kit.

The PCR products were cloned into the pMD18-T vec-
tor (TaKaRa Inc., Dalian, China) by T4 DNA polymerase,
and named as pMD18-pSH4. Then the plasmid was intro-
duced into Escherichia coli strain DH5a with heat
shock method (Sambrook et al. 1989). The plasmids
of bacteria were extracted by the plasmid extraction
kit and confirmed by sequencing using two primers
(M13F: 5'-TGTAAAACGACGGCCAGT-3" and MI3R:
5'-CAGGAAACAGCTATGACC-3"). Sequence homolo-
gies were determined by local alignments with SeqMan
5.01 software (DNASTAR Inc.).

Constructing pSH4-GUS vector and producing transgenic
rice plants

The isolated fragment of potential promoter in the
vector pMD18-pSH4 was inserted into the Xbal/Bglll
sites of vector pCAMBIA1301 to replace the CaMV35S
promoter upstream from the GUS reporter gene to
generate a recombinant vector, pSH4-GUS (Figure 6A).
The inserted fragment was confirmed by PCR amplification
with a primer pair (psh4aF: 5'-GCTGATCCGCTGGCCGT
AGAAGTC-3’ and psh4aR: 5'-GCGCGTGAAGGGAG
GGGGTTTA-3"') and sequenced with two primers
(Pseql: 5'-CCAGGCTTTACACTTTATGC-3" and Pseq2:
5-TTCACGGGTTGGGGTTTCTAC-3"). The pCAM

A B

HYG(R){‘EEE"
HYG(R){'Eﬁal

Figure 6 Structure of pSH4-GUS (A) and 35S-GUS (B) constructs for rice (Nipponbare) transformation. Tnos: terminator of nopaline
synthetase; HYG(R): hygromycin-resistence gene; 35S: cauliflower mosaic virus (CaMV) 35S promoter; pSH4: SH4 promoter; Xbal and Bglll indicate
restriction sites; gusA: B-glucuronidase (GUS) gene; RB: right border; LB: left border.

Xbal Balll RB
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BIA1301 vector without any inserts, where the GUS gene
was still driven by a constitutive promoter CaMV35S, was
used as the positive control for GUS analysis, and named
as 35S-GUS (Figure 6B).

The plasmids of the recombinant vectors, pSH4-GUS
and 35S-GUS were both introduced into Agrobacterium
tumefaciens strain LBA4404 (Hoekema et al. 1983) by
electroporation (Sambrook et al. 1989), and transformed
into rice calli induced from mature embryos of Nipponbare
(Hiei et al. 1994). Regenerated plants (T, generation) were
eventually transferred to soil in pots and grown to maturity
in a greenhouse.

Cultivation and identification of transgenic rice
Transgenic and non-transgenic rice seeds were germinated
in the Petri-dish with moist filter papers at 37°C for 2 days
in dark. Germinated seeds were grown in pots with soil in
an illuminated climate cabinet at 30°C. After 30 days,
well-grown seedlings were transplanted into a paddy
field filled with rice nursery soil. Transgenic plants of
T,-T3 generations were produced from self-pollination
of T, transgenic individuals.

To identify transgene-positive plants, the transgenic
plants were examined by PCR with the primer pair (gusAF:
5'-ACGACTCGTCCGTCCTGTAG-3" and gusAR: 5'-
CCGCATCACGCAGTTCAA-3"). To determine the copy
number of the transgene, Southern blot analysis was carried
out. Fresh leaves of the transgenic (T, generation) and non-
transgenic control plants were used to extract total genomic
DNA (Murray and Thompson 1980) and quantified
spectrophotometrically. About 30 pg of genomic DNA was
digested with BamHI restriction enzyme, size-separated in a
1% (w/v) agarose gel and transferred onto the Hybond-N+
nylon membrane (Amersham Pharmacia, Uppsala, Sweden)
by a capillary transfer procedure. DNA hybridization was
carried out following the method by Sambrook et al. (1989)
using a HYG (R) gene-specific probe and imaged.

Determining histochemical and fluorescent GUS
expression

Tissue samples from at least three pSH4 transgenic
lines (T,-T3 generations), the 355-GUS transgenic and
non-transgenic control plants were included for GUS
analyses, including its expression profiles and quantitative
assay. Leaf (blade) and stem (internode) tissues were
collected at the growth stages between two months and
three months after seed germination. Flower- or seed-
pedicel junction regions, containing 1 mm of a pedicel and
1.5 mm of the attached flowers or seeds from young
panicles, were sampled at 15 days after flowering (DAF),
and mature panicles were sampled at 30 DAF (Li et al.
2006b). These samples were collected from the T, plants.
Embryos and endosperms of mature seeds, plumules
(including coleoptiles) and radicles of seedlings five-day
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after seed germination, and young leaves and roots of
seedlings about 20 days after seed germination were
collected from its T3 plants.

GUS expression profiles were determined by histochem-
ical assay (Jefferson 1987). The collected tissue samples
were immersed in GUS Staining Buffer (100 mM sodium
phosphate buffer pH 7.0, 0.5 mM K3[Fe(CN)g], 0.5 mM
K,4[Fe(CN)¢], 10 mM Na,EDTA, 0.1% (v/v) Triton X-100)
supplemented with 1 mM X-Gluc solution, and incubated
at 37°C for overnight (c. 24 h) in the dark. After bleached
with ethanol to remove chlorophyll, the stained sam-
ples were observed and photographed under a dissecting
microscope.

GUS quantitative assay was performed using the fluor-
escent method described by Jefferson (1987). The col-
lected tissue samples were homogenized in a GUS
Extraction Buffer (50 mM Na,HPO, at pH 7.0, 10 mM
EDTA, 0.1% sodium laurylsarcosine, 0.1% (v/v) Triton
X-100 and 10 mM [B-mercaptoethanol). Total protein con-
centration of the samples was determined by the Bradford
assay method (Bradford 1976). GUS activity was deter-
mined with a fluorescence photometer by measuring the
amount of 4-methylumbelliferone (4-Mu) produced under
the catalysis of GUS in 1 milligram of total protein per
minute. The assay for each sample was repeated three
times. Six biological from the three independent pSH4-
GUS transgenic lines (T-20, T-25, and T-37), the 35S-GUS
transgenic plants and non-transgenic control of each tis-
sue sample were performed.

The expression level of the promoters were calculated
as the differences between the mean values of GUS
quantitative assay results of pSH4-GUS or 35S5-GUS
transgenic plants and non-transgenic controls. The relative
promoter expression strength of pSH4 was determined by
the ratio of GUS activity driven by pSH4 and 35S
promoters. Significant differences between transgenic and
non-transgenic plants were determined by the independent
t-test using the software package SPSS ver. 19.0 for
Windows (IBM Inc., New York, USA).
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