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Abstract 

Allelopathy has been considered as a natural method of weed control. Despite the nature of allelochemical com‑
pounds has been studied, little is known about the genetic basis underlying allelopathy. However, it is known that rice 
exhibits diverse allelopathic potentials across varieties, and breeding for rice plants exhibiting allelopathic potential 
conferring an advantage against weeds in paddy fields would be highly desirable. Knowledge of the gene factors 
and the identification of the genomic regions responsible for allelopathy would facilitate breeding programs. Taking 
advantage of the existing genetic diversity in rice, particularly in temperate japonica rice, we conducted a compre‑
hensive investigation into the genetic determinants that contribute to rice allelopathy. Employing Genome‑Wide 
Association Study, we identified four Quantitative Trait Loci, with the most promising loci situated on chromosome 2 
and 5. Subsequent inspection of the genes located within these QTLs revealed genes associated with the biosynthesis 
of secondary metabolites such as Phenylalanine Ammonia Lyase (PAL), a key enzyme in the synthesis of phenolic com‑
pounds, and two genes coding for R2R3‑type MYB transcription factors. The identification of these two QTLs associ‑
ated to allelopathy in rice provides a useful tool for further exploration and targeted breeding strategies.
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Background
Rice is a global staple food and high yields are needed to 
sustain a large population. It is also important to facilitate 
a sustainable crop and to increase the incomes of farm-
ers and the economic profitability of the crop. Weeds, 
in their competition for nutrients, moisture, and light, 
diminish rice yields. The management of weed control 
involves the application of herbicides, which is environ-
mentally unsustainable, and requires a high amount of 

manual labor, which is costly and profitless. The quest 
for an economically and environmentally sustainable 
approach to weed control remains a challenge. In this 
context, allelopathy can be considered as an environ-
mentally friendly practice for weed control. Allelopathy 
has been described as the ability of an organism to affect 
growth, survival, and reproduction of other organisms 
through the secretion of allelochemicals or their release 
into the environment (Rice 1984). Allelopathy has been 
observed in numerous plant species, and its potential 
impact is well-documented. In fact, the efficiency of 
using straw and hulls from certain crops, including rice, 
as mulch for weed control has been successfully dem-
onstrated (Khamare et  al. 2022). Among others, barn-
yardgrass (Echinochloa crus-galli) is a globally extended 
harmful weed, frequently found in paddy fields, that pro-
duces field losses (Oerke and Dehne 2004) and, worriedly, 
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the appearance of resistance to herbicides has been fre-
quently observed (Amaro-Blanco et al. 2021).

In rice, allelopathic effects have been described in 
certain varieties (Dilday et  al. 1994). Some varieties can 
synthesize and release chemical compounds into the 
environment that can affect the growth and develop-
ment of neighbouring plants by interfering with their 
physiological processes, such as seed germination, root 
elongation, and nutrient uptake. Their inhibitory effect 
on weeds, such as ducksalad (Heteranthera limosa) or 
barnyardgrass, has been reported (Dilday et  al. 1994). 
In the late 1980s, hundreds of accessions from germ-
plasm collections were examined in field experiments for 
their allelopathic potential towards ducksalad, redstem 
(Ammannia coccinea Rottb.), lettuce (Lactuca sativa L.) 
and barnyard grass among others (Dilday et  al. 1994; 
Hassan et al. 1998). More recently, bioassays were devel-
oped to reduce environmental factors, and hundreds of 
accessions were also screened in the laboratory (Kohli 
et  al. 2008). As a result, several accessions with strong 
allelopathic potential have been identified, as is the case 
of PI213777 (Dilday et al. 1994).

Several allelochemicals have been isolated from plants 
and root exudates of different plant species and many 
studies have been performed to find the nature and the 
effect of such compounds in the rice with barnyardgrass 
interaction (Macías et  al. 2007). Most reported alle-
lochemicals in rice are secondary plant metabolites, 
including fatty acids, indoles, momilactones, phenolics 
and terpenes (Seal et  al. 2004; Khanh et  al. 2007; Kato-
Noguchi and Peters 2013). Transcriptomic studies have 
also been conducted in the interaction of rice with barn-
yardgrass and differential expressed genes associated 
with momilactone and phenolic acid biosynthesis were 
found to be up-regulated in a quick allelopathic response 
(Song et al. 2008; Sultana et al. 2023). But no candidate 
genes have already been reported.

Secondary metabolites are mainly derived from the 
phenylpropanoid metabolic and isoprenoid pathways 
and their associated branches (Fang et al. 2020). Pheny-
lalanine ammonia lyase (PAL) is an initial key enzyme in 
the biosynthesis of phenolic compounds, catalysing the 
conversion of phenylalanine to cinnamic acid, which is a 
precursor for the synthesis of allelopathic phenolic com-
pounds such as ferulic acid and p-coumaric acid. The role 
of PAL in the regulation of chemical induction in allelop-
athy has been reported previously and the up-regulated 
expression of PAL is associated with the enhanced inhibi-
tory effect of allelopathy grown with barnyard (Zhang 
et al. 2019b).

Momilactones A and B were first isolated from rice 
husk, as growth inhibitors (Takahashi et  al. 1976) and 
more recently they have been found in root exudates of 

allelopathic cultivars as PI312777 and Koshihikari (Kong 
et al. 2004; Kato-Noguchi et al. 2008). Momilactones have 
been considered phytoalexins in rice protection against 
fungi (Cartwright et  al. 1977; Cartwright et  al. 1981). 
Later on, their ability to inhibit weed growth was dem-
onstrated (Kato-Noguchi et  al. 2010). The biosynthetic 
pathway of momilactones is well known (Kato-Noguchi 
and Peters 2013), and knock-outs of relevant genes par-
ticipating in the diterpertene synthesis pathway such as 
copalyl diphosphate synthase 4 (OsCPS4) or kaurene 
synthase-like 4 (OsKSL4) result in reduced allelopathic 
activity of rice in barnyard (Xu et  al. 2012). Two gene 
clusters have been identified in the synthesis of momilac-
tones (Xu et al. 2012; Kato-Noguchi and Peters 2013).

The role of phenolic compounds in allelopathy has 
been questioned on several occasions. The main concern 
is that the levels of phytotoxic compounds in the rice soil 
are not sufficient to cause phytotoxicity (Olofsdotter et al. 
2002). In a previous study, the action of phenolic acids in 
rice roots exudates was investigated individually or com-
bined finding that, despite rice showed more phytotoxic 
tolerance to these compounds that arrowhead (Sagitta-
ria monotevidensis Cma. & Schltdl), the concentration 
required for growth inhibition was much higher than 
the levels found in root exudates (Olofsdotter et al. 2002; 
Seal et al. 2004). But their participation in allelopathy is 
still unclear and it has been suggested that phenolic acids 
might act synergistically with other chemicals to function 
as allelochemicals. On the contrary, momilactone B has 
been proposed to be a major allelochemical in rice (Kato-
Noguchi et al. 2010).

Previous studies indicated that rice allelopathy is a 
quantitative genetic trait, which is influenced by environ-
mental conditions. The genetic control of allelopathy has 
been investigated previously in biparental populations. 
Quantitative trait loci (QTLs) analysis in a population 
of PI312777 and Rexmont, using a 215 RFLP markers, 
revealed seven associated loci distributed in chromo-
somes 1, 3, 5, 6, 7, 11, and 12 with inhibition of the root 
length of lettuce plants (Ebana et al. 2001). Additionally, 
four main QTLs associated to allelopathic activity against 
barnyardgrass under laboratory conditions were mapped, 
using 140 DNA markers, in chromosomes 2, 3 and 8 in 
a population derived from a cross between cultivar IAC 
165 (japonica variety) and cultivar CO-39 (indica vari-
ety) (Jensen et  al. 2001). In the same way, two QTLS 
were identified in chromosomes 4 and 7 in a biparental 
population derived from AC1423, an indica variety with 
high allelopathic potential and Aus 196, an Aus variety 
with low allelopathic potential (Jensen et al. 2008). These 
studies were carried out before the development of the 
new-generation sequencing techniques. The availability 
of whole genome sequencing and its low cost, allows the 
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development of high-density SNP-type marker panels 
that that provide much greater precision in assays than 
previous ones. In addition, GWAS in a wide diverse pop-
ulation has become an extensive mapping tool to dissect 
complex agronomic traits. Biparental populations limit 
the analysis to a relatively low number of genes and, in 
contrast, GWAS enables to search in a broader gene pool 
as it is conducted using a wide diversity. Till now, GWAS 
has not been conducted in rice allelopathy.

Most of the genetic and molecular analyses of the allel-
opathic potential have been carried out on line PI312777, 
with strong weed suppressing ability. It is accepted that 
momilactones (A and B) and phenolics are responsible 
for the allelopathic potential of this line (Kong et al. 2004, 
2006; He et al. 2012). Despite the ability of rice plants to 
produce diterpenoids that are released into the rhizos-
phere was recognized decades ago, as well as their func-
tion as phytoalexins, the allelopathic activity of these 
compounds as a natural strategy to prevent weed growth 
remains relatively unexplored. Particularly there is lim-
ited information about allelopathic potential in modern 
and European varieties and it is not known whether other 
mechanisms responsible for the allelopathic effect remain 
to be discovered in other varieties.

In this sense, the search for cultivars adapted to Euro-
pean agroclimatic conditions with the potential to inhibit 
barnyardgrass, and the elucidation of genes responsi-
ble for allelopathy in temperate japonica rice remain to 
be done. In this manuscript, we have investigated allel-
opathy in a temperate japonica rice panel, conducted a 
GWAS using a high-density panel of SNPs, and assessed 
the feasibility of initiating a breeding programme to 
incorporate allelopathy in rice while maintaining grain 
yield and quality, which will ultimately benefit both farm-
ers and the environment.

Material and Methods
Plant Material
A set of 171 accessions showing a wide genetic diversity 
was generated by selecting a set of 157 accessions from a 
previously generated rice collection (Oryza sativa) (Reig-
Valiente et  al. 2018) and adding 14 recently released 
accessions. The set comprises 163 japonica and 8 indica 
type accessions.

Barnyard grass seeds were collected from two plants 
from experimental fields at Tancat de Malta (39° 18’ N 0° 
20’ W, Valencia, Spain) and were identified as Echinoch-
loa crus-galli and Echinochloa hispidula.

Phenotypic Bioassay
The allelopathic potential of 171 accessions was evalu-
ated using a modified relay seeding technique (Navarez 
and Olofsdotter 1996). The bioassay was performed in 
separate batches and replicated twice.

On the first day (Additional file  1: Fig. S1, day 1) 12 
rice seeds of each accession were sterilized by immer-
sion in a 2.5% sodium hypochlorite solution for 30 min, 
followed by rinsing with distilled water thrice. The seeds 
were placed equidistantly in a 9  cm diameter Petri dish 
containing two filter papers at the base, a thin layer of 
perlite at top, watered with 20  ml of MES 1  mM at pH 
6.0, and the lid was closed. The seeds were germinated 
and cultured in a growth chamber with a constant tem-
perature of 28  °C in darkness for three days. On the 
fourth day (Additional file 1: Fig. S1, day 4) the lids were 
removed and batches comprising 16 accessions were 
placed in a plastic box shielded with a transparent plas-
tic cover, to avoid evaporation. Plants were incubated in 
a growth chamber at 26 °C under a 16 h/8 h (day/night) 
photoperiod and the plates were watered each day with 
3 ml of MES 1 mM pH 6.0. On the same day, sterilized 
barnyardgrass seeds were germinated in Petri dishes and 
incubated in a growth chamber at 28 °C under dark con-
ditions for three days. On the seventh day (Additional 
file  1: Fig. S1, day 7), 9 barnyardgrass seedlings show-
ing root length between 6 and 8 mm were equidistantly 
placed in small holes in the perlite layer using a forceps in 
order to keep the roots of the barnyardgrass submerged, 
avoiding the growth above the surface. As a control, 20 
barnyardgrass seedlings were transplanted into an addi-
tional Petri dish with perlite, in the absence of rice. All 
plates were incubated for an additional week.

On the fifteenth day (Additional file 1: Fig. S1, day 15), 
rice and barnyardgrass (from co-cultured and control 
plates) root length was measured with a vernier caliper 
after washing off the perlite. The percentage of inhibition 
of barnyardgrass root growth was recorded as the differ-
ence in root length between barnyardgrass growing in 
the presence or absence of rice, as shown:

inhibition%

=

root lenght barnyardgrass control (mm)− root lenght barnyardgrass cocultured (mm)

root lenght barnyardgrass control (mm)
× 100
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Data filtering, processing, and plotting of phenotype data 
were conducted by using R statistical software (ver. 4.2.0), 
employing the packages stats and ggplot2.

Whole Genome Sequencing and Data Analysis
DNA was extracted from rice fresh leaf tissue using the 
cetyltrimethylammonium bromide (CTAB) method with 
slight modifications, as previously described (Murray and 
Thompson 1980). DNA was quantified using a NanoDrop 
1000 Spectrophotometer (Thermo Scientific, Waltham, 
MA, USA) and Qubit™ dsDNA Quantification Assay 
Kit using the Qubit 2.0 Fluorometer (Life Technologies, 
EEUU). Quality was checked by electrophoresis.

Whole Genome Sequencing was performed at Novo-
gene UK Company Limited (Cambridge, United King-
dom). Genomic DNA was randomly sheared into short 
fragments that were end-repaired, adenylated, and fur-
ther ligated to Illumina specific indexed paired-end adap-
tors. The fragments with adapters were PCR amplified, 
size selected and purified. The final DNA libraries were 
quantified using Qubit and real-time PCR and a bioana-
lyzer was used for size distribution detection. The librar-
ies were sequenced using an Illumina NovaSeq 6000 
system PE150, according to a 350  bp library type and 
to standard Illumina operation procedures with a yield 
of > 8 Gb per lane and median phred quality score of Q36.

BBDuck function, from BBMap software (https:// sourc 
eforge. net/ proje cts/ bbmap/) was used for adaptor and 
quality trimming (Forward: 5′-AGA TCG GAA GAG CGT 
CGT GTA GGG AAA GAG TGT AGA TCT CGG TGG TCG 
CCG TAT CATT-3′; Reverse: 5′-GAT CGG AAG AGC 
ACA CGT CTG AAC TCC AGT CAC GGA TGA CTA TCT 
CGT ATG CCG TCT TCT GCTTG-3′).

Clean reads were aligned to the Nipponbare reference 
genome (IRGSP-1.0) using BWA-MEM (Li 2013). The 
Samtools suite (Danecek et al. 2021) was used for down-
stream processing of alignment files. Specifically, “sam-
tools flagstat” was used to obtain the mapping statistics 
from each alignment and “samtools view” was deployed 
to remove unmapped reads and very low-quality align-
ments (Q < 10).

Multi-sample variant calling was performed with 
BCFTOOLS “mpileup” and “call” functions to obtain 
SNPs and INDELs. For each variant, we retained its 
allelic depth (AD), number of high-quality bases (DP), 
phred-scaled strand bias P-value (SP), phred-scaled gen-
otype quality (GQ) and posterior genotype probability in 
Phred scale (GP). BCFTOOLS “view” was used to trans-
form from the bcf format file to a gvcf format and “norm” 
function for outputting only the first instance when a 
record is present in multiple lines.

The analysis yielded 351.4 million variants, that were 
filtered with vcftools using the parameters: --remove-
indels, --maf 0.05, --max-missing 0.9, --minQ 30, 
--minDP 10, --maxDP 30, --max-meanDP 30, --min-
meanDP 10, and only 1.0 million SNPs remained.

Additionally, the SNP data matrix was pruned with 
PLINK software (Purcell et  al. 2007) for high levels of 
pairwise linkage disequilibrium (LD) using “--indep-pair-
wise 50 5 0.9” (window of 50 SNPs with a shift of 5 SNPs 
and 0.9  R2 cutoff). At this step multiallelic SNPs were also 
removed. Finally, a 124.019 SNP data array was obtained 
for the 171 varieties.

Linkage Disequilibrium (LD) Estimation
The linkage disequilibrium (LD) decay rate was calcu-
lated using TASSEL v.5 software (Bradbury et  al. 2007) 
with a sliding window of 50 SNPs, as the chromosomal 
distance where the Pearson’s correlation coefficient (r2) 
between SNP pairs dropped to half its maximum esti-
mated value. Data Plotting was performed with R soft-
ware v.4.3.0 (R Core Team 2023).

Principal Component Analysis (PCA)
Principal Component Analysis was performed using 
“SNPRelate” package (Zheng et al. 2012) from R software. 
The plot was drawn with the “rgl” package (Murdoch and 
Adler 2023).

Population Structure Analysis
The population genetic structure of the collection was 
assessed using the Bayesian clustering method imple-
mented in STRU CTU RE 2.3.4 (Pritchard et al. 2000). For 
that aim a selection of 18,728 coding SNPs from the 171 
varieties was used. To obtain the pool, we intersected the 
124,019 filtered SNPs with coding regions (CDS) of the 
21,418 IRGSP Nipponbare genes conserved in the whole 
Rice Gene Index (RGI) collection (core genes) (Yu et  al. 
2023). The RGI collection encompasses 16 platinum 
standard reference genomes of rice (Zhou et  al. 2020). 
The 18,728 SNP dataset was generated through this inter-
section process using the bedtools intersect function.

The software estimated the optimal number of genetic 
clusters (K) and calculated each variety’s membership 
proportion. Analyses were based on the admixture ances-
tral model for a range of K values from 1 to 7. We per-
formed 10 runs for each K. Each run was implemented 
with a burn-in period of 10,000 steps followed by 100,000 
Monte Carlo Markov Chain iterations. The optimal num-
ber of K clusters was estimated with the ad hoc param-
eter (ΔK) of Evanno (Evanno et  al. 2005) in Structure 
Harvester (Earl and VonHoldt 2012).

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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Phylogenetic analysis was performed by converting the 
124,019 SNP dataset in VCF format into a PHYLIP file 
using the vcf2phylip.py script (Ortiz 2019). To calculate 
pairwise genetic distances between rice cultivars a maxi-
mum likelihood (ML) method was applied by IQ-TREE 
v.2.1.2. (Minh et al. 2020) with 1000 bootstrap replicates 
and the GTR + ASC model, specific for SNP data. Data 
representation in tree format was displayed with iTOL 
v.6.8.1. (Letunic and Bork 2021).

Marker Trait Association Analysis
The relationship between phenotype and the panel 
of 124,019 SNPs was examined through GWAS using 
TASSEL v.5 software (Bradbury et  al. 2007). A kin-
ship matrix (K) was created from the genotype data 
utilizing the Centered IBS (Identity-By-State) method, 
which calculates the probability that alleles randomly 
drawn from two individuals at the same locus are iden-
tical. Loci may consist of one or more nucleotides. 
In this approach, genotypes are encoded as 2, 1, or 
0, corresponding to the count of one of the alleles at 
that particular locus. As the mean of the percentage of 
missing data was very low after filtering, 0.08%, then 
the missing genotype values were replaced with the 
average genotypic score at that locus before estimating 
a relationship matrix.

In addition, a distance matrix (Q) of the genotype 
data was calculated as 1—IBS (Identity-By-State) simi-
larity. From this matrix, a Multidimensional Scaling 
(MDS) analysis, also known as Principal Co-ordinate 
Analysis (PcoA), was conducted. The axes produced by 
MDS were used as covariates to correct the population 
structure. In addition, batches due to differences in the 
temporal analysis of the phenotypic analysis were used 
as covariates.

The MDS results, in conjunction with the genotype 
(VCF file) and phenotype data (percentage of inhibi-
tion), were integrated, and the kinship matrix was 
incorporated to perform the phenotype-genotype 
association analysis. For comparison, two statisti-
cal models, Mixed Linear Model (MLM) and General 
Linear Model (GLM), were employed. In the case 
of MLM, K and Q matrix were used as kinship and 
population structure controls respectively. Given 
that MLM offers an effective control of false posi-
tives but with potential occasional false negatives, we 
opted to stablish a threshold value calculated using a 
non-stringent method, the minimum Bayesian Factor 
(mBF) (Goodman 2001; Wakefield 2009; Zhang et  al. 
2019a). The threshold P-value for significant asso-
ciation was set at P ≤ 2.57 ×  10−4, corresponding to 
a − log10(P) = 3.59 calculated using the following for-
mula: mBF = −e*P*ln(P).

For GLM, the association analysis was performed 
using a least squares fixed effects linear model. As GLM 
may cause potential false positives, the Bonferroni 
method was used to determine the threshold, given 
its strength. The threshold for significance was set at 
P ≤ 8.1 ×  10−6, corresponding to − log10(P) = 5.09, cal-
culated by the rough Bonferroni correction.

SNPs situated within a region with a distance similar 
to the LD (considering the calculated LD decay distance 
of 157 kb) were considered as a single QTL. SNPs dis-
playing the lowest p-value in a QTL were regarded as 
the leading SNPs. The Manhattan plot was drawn using 
the R package”qqman”(Turner 2018). Phenotype effect 
of the leading SNPs was plotted with “ggstatsplot” 
package (Patil 2021) from the same software.

Results
Allelopathic Potential Assay
The ability of inhibition of barnyardgrass root growth 
was evaluated in plants from a panel of 163 japonica 
varieties adapted to temperate climate (Fig. 1; Additional 
file  7: Table  S1). The collection comprised modern and 
old varieties as well as some landraces from different geo-
graphical origins to cover a wide genetic diversity. The 
European accessions were the most abundant group, with 
105 from four different countries. A set of 8 indica culti-
vars was also included in the collection as a reference of 
genetic divergence.

Rice seedlings were incubated in the presence of barn-
yardgrass plants under controlled laboratory conditions 
for 7 days and then, the length of barnyardgrass roots was 
measured. We found marked differences in the inhibitory 
activity among the varieties, with a coefficient of varia-
tion of 130.5% indicating the suitability of this collection 

Fig. 1 Distribution of barnyardgrass root growth inhibition 
frequencies. Results obtained from the allelopathic potential bioassay 
evaluated under coculture conditions with 171 different commercial 
rice varieties
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for the association study. The assay was performed in 
duplicate and the replicability was evaluated showing a 
correlation of 0.42 between both replicates (Additional 
file 2: Fig. S2). Most of the cultivars inhibited the growth 
of barnyardgrass, among them, 8 varieties suppressed 
barnyardgrass root growth in 40–50%, representing a 
4.7% of the collection. The highest allelopathic poten-
tial was exhibited by Ganao, Katy and Senia, inhibiting 
the barnyardgrass root growth 50.4%, 48.4% and 47.7% 
respectively compared to plants grown without the pres-
ence of rice plants (Additional file 7: Table S1; Additional 
file  3: Fig. S3). Some varieties showed no inhibition or 
even a stimulation of barnyardgrass root growth (Addi-
tional file  3: Fig. S3). This is the case of Koshihikari, a 
known variety to exudate momilactone (Kato-Noguchi 
et  al. 2008), that didn’t promote barnyard grass growth 
stimulation in our conditions. Distribution of root 
growth inhibition frequencies is shown in Fig. 1.

In addition, the rice root length was measured to find 
out if the co-cultured could affect the rice root growth. 
We didn’t find any correlation between the length of 
barnyardgrass and rice root length, indicating that the 
inhibition wasn’t caused by space competition (Addi-
tional file 2: Fig. S2). Barnyardgrass stem length was also 
recorded, and no differences in growth were found when 
cultured in the presence or absence of rice (Additional 
file 8: Table S2).

Genome Sequencing and Identification of Polymorphisms
Genome resequencing of the varieties generated a mean 
of 51 ×  106 short reads per cultivar which correspond to 
9.53  GB per sample with a mean coverage of 20×. The 
clean reads were mapped to the Nipponbare reference 
genome (IRGSP-1.0) and 98% of them were mapped and 
properly paired. We detected 351 million raw variants in 
total, which were filtered according to different criteria as 
call rate > 90% and read coverage between 10× and 30× 
and quality (see methods). Indels were removed as well 
as SNPs with a minimum allele frequency (MAF) below 
5% were removed. The extent of linkage disequilibrium 
(LD) in the population was estimated in 157 kbp, when r2 
drops to 0.23 (Additional file 4: Fig. S4). Finally, after SNP 
pruning by LD, a panel of 124,019 SNPs was obtained, 
with an average value of 10,334.9 markers per chromo-
some. Assuming from the newest genome assembly a size 
of 373 Mpb (Kawahara et  al. 2013), the average density 
was 3.1 kbp/marker, ranging from 2.2 for chromosome 11 
to 4.1 for chromosome 4.

Genetic Structure of the Collection
Population structure of the collection was estimated 
using STRU CTU RE software. According to this analysis, 
∆K showed maximum values for K = 4 (∆K = 1484.25) 

indicating that the optimum number of subpopulations 
was 4 (Additional file 5: Fig. S5). Differentiation of these 
four subpopulations was corroborated by the Fst values 
obtained for each group (Additional file 9: Table S3). The 
collection showed a strong structure with most varieties 
belonging to two main genetic groups (Fig. 2). While sub-
group 1 had limited weight, subgroup 2 included mostly 
medium grain type cultivars with different geographi-
cal origins from Europe, Asia, America and Australia. 
Subgroup 3 comprises a small group of indica accession 
included in the collection. Finally, long grain type acces-
sions conformed subgroup 4 and displayed also different 
geographical origins, mainly from Europe and Amer-
ica. To deepen the patterns of population structure, we 
performed principal components analysis (PCA) that 
supported two main groups (Fig.  2). The first princi-
pal component (PC1) explained the 15.43% of the vari-
ance, and the second component (PC2) the 10.97% while 
the third component (PC3) explained the 4.11% of the 
genetic variance. These two main PCs separated varie-
ties in accordance with the four subpopulations displayed 
using STRU CTU RE.

The relationship of accessions in the collection and the 
genetic distances among them were estimated. The dis-
tribution of cultivars obtained was roughly in accord-
ance with their origin and grain type in agreement 
with the population genetic analysis and with previ-
ous results (Reig-Valiente et al. 2016). The indica acces-
sions, included in subgroup 3 in the population structure 
analysis, were grouped into a highly supported cluster, 
and closely, japonica long grain type varieties, included 
in subgroup 4, diverge into an additional cluster (Fig. 2, 
Additional file 3: Fig. S3). Most of the japonica varieties 
displaying medium grain, included in subgroup 2, were 
grouped in 5 different clusters with a distribution that 
clearly matches their origin and, even from some occa-
sions, the release date of the cultivars. Asian and Ameri-
can/Australian varieties were clustered in two different 
clades, while European accessions were fragmented into 
several small subgroups that included, mostly, European 
ancient varieties, Italian and Spanish varieties.

Association Analysis
Both Mixed Linear Model (MLM) and General Linear 
Model (GLM) were used to detect associations between 
SNP markers and variations in the inhibitory potential 
of barnyardgrass root growth. It has been suggested that 
MLM is a stringent method that provides fewer spurious 
associations than other methods but in contrast increases 
the number of false negatives (Kaler et al. 2020). There-
fore, we used GLM as an additional approach for com-
parison and verification of the results. P-values and 
q-values were calculated. In the case of MLM, we set a 
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Fig. 2 Population structure of the collection based on the genotype data. A The estimated membership probability of assigning cultivars to 4 
groups. Bar length represents the probability of each variety belonging to different subgroups. B 3D Principal Component Analysis (PCA) plots. 
Three Principal Components are represented as PC1, PC2 and PC3 respectively. C Unrooted phylogenetic tree inferred by the maximum likelihood 
(ML) method. For all nodes, bootstrap percentage was 100. Length branches show the genetic divergence between varieties

Fig. 3 Genome‑wide association mapping of the barnyardgrass root growth inhibition. Manhattan and quantile–quantile plots are shown using 
(A) MLM and (B) GLM. The red horizontal lines indicate genome‑wide significant thresholds
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p-value <  10−4 threshold, according to the minimum 
Bayesian Factor, to consider a SNP as significantly associ-
ated with the allelopathic potential. In the case of GLM, 
as it is a low restrictive method, we set a threshold of 
p-value <  10−5, calculated by the Bonferroni correction 
test. The q-values were also estimated. The quantile–
quantile (QQ) plot and Manhattan plot for the analysed 
trait obtained using the PCA Qmatrix is shown in Fig. 3. 
QQ plot indicated that the model was well fitted to the 
data; the observed p-values were uniformly distributed 
with some deviation at high values from the expected 
p-values (Fig. 3).

The statistical analysis revealed several SNPs sig-
nificantly associated with barnyardgrass root growth 
inhibition (Table 1; Additional file 10: Table S4), which 
corresponded to 4 QTLs, considering an associa-
tion locus as a chromosomal region in which the dis-
tance between the adjacent pairs of associated SNPs is 
given by the estimated LD. qAll-2a and qAll-2b, only 
detected using GLM, were located in chromosome 2 
at positions 22,671,912 and 24,842,411, respectively. 
qAll-2b consisted in three SNPs located in a region of 
64.1 Kb. qAll-3 was located in chromosome 3 at posi-
tion 22,755,757. qAll-5, in chromosome 5, comprises 

Table 1 List of lead‑SNPs significantly associated with the barnyardgrass root growth inhibition (MLM, p‑value <  10−4; GLM, 
p‑value <  10−5)

QTL Chr Lead SNP position MLM GLM

p-value Significant 
SNPs

Genomic interval p-value Significant 
SNPs

Genomic interval

qAll‑2a 2 22.671.912 5.69E−06 1

qAll‑2b 2 24.870.799 9.71E−07 3 64.115

qAll‑3 3 22.755.757 7.71E−05 1 2.10E−07 1

qAll‑5 5 1.843.023 2.80E−05 16 141.090 269E−07 20 194.608

Fig. 4 Violin plots. Comparison of the allele content at the lead SNP A qAll‑2a, B qAll‑2b, C qAll‑3 and D qAll‑5 in the population
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a region of 141.1  Kb or 194.6  Kb depending on the 
applied methodology displaying a peak value at posi-
tion 1,843,023, given by the lowest p-value (Table  1). 
An additional single SNP above the threshold using 
both methods was found on chromosome 4 at position 
21,850,604, which was excluded because there were no 
significant SNPs located nearby and to the undeter-
mined allele content in the accessions showing differ-
ential root growth inhibition (Additional file 6: Fig. S6).

We analyzed the allele content in the lead SNP and 
found that they displayed promising allele distribu-
tion among the cultivars as significative differences in 
the growth inhibition ability according to allele pre-
sent in the accessions were found in all identified QTLs 
(Fig.  4). Accessions carrying different alleles of SNP 
qAll-2 showed a different barnyardgrass root growth 
inhibition value, those carrying T displayed 24.86% in 
contrast to those carrying G which displayed 9.08%. 
Similarly, qAll-2b, accessions carrying the minor allele 
C showed a root growth inhibition of 25.59%, mean-
while, those accessions carrying the major allele T 
showed 11.11% inhibition. While accessions carrying 
allele T in qAll-3 lead SNP didn’t show barnyardgrass 
root inhibition, plants with the most common allele A 
showed a root growth inhibition of 16.4%. The mean 
values for barnyardgrass root growth inhibition were 
lower in the accession containing C, 9.08% of inhibi-
tion, than those carrying T, 24.95% of inhibition, at the 
lead SNP in qAll-5. The analysis of Ganao allele content 
in the lead marker of the four QTLs revealed that they 
carried the favourable allelopathy allele.

Mining Candidate Genes for Allelopathy
We looked for annotated genes that could be involved 
in allelopathic activity within the four QTL regions in 

an extended the interval of 150 Kb, using the annotated 
reference genome Nipponbare IRGSP-1.0 (RAP-DB) 
(Table 2).

Os02g0589000, coding for a lecithin:cholesterol acyl-
transferase, was localised in qAll-1. Lecithin:cholesterol 
acyltransferases, also named as phospholipid:diacylglycerol 
acyltransferases, are involved in the synthesis of triacyl-
glycerol (Dahlqvist et  al. 2000). The up-regulation of this 
gene has been observed in previous allelopathic assays 
(Sultana et  al. 2023). Four additional genes coding for 
proteins of the lecithin:cholesterol acyltransferases fam-
ily were localised in the vicinity in qAll-2. Another gene 
involved in lipid metabolism, Os05g0133401, coding for an 
esterase, is localised in qAll-5 (Additional file 11: Table S5).

PAL is a key enzyme in the phenylpropanoid synthesis 
pathway and, it has been related to allelopathic activity 
on barnyard grass in several occasions (Fang et al. 2013). 
Four genes coding for PAL could be found in qAll-2b. 
One of these genes Os02g0626600, coding for PAL3, 
was previously found to be up-regulated in response to 
the presence of barnyard grass (Song et al. 2008; Sultana 
et al. 2023).

Next to qAll-2b SNP peak, G1L3 is also localised. The 
up-regulation of G1 LIKE PROTEIN 3 (G1L3) has been 
reported previously in transcriptomic analysis of rice in 
the interaction with barnyardgrass (Fang et al. 2009; Sul-
tana et al. 2023).

Two genes coding for R2R3-type MYB transcrip-
tion factors, MYB30 and MYB52, were found located 
in qAll-2b and qAll-5. R2R3-MYB factors play a posi-
tive role in the regulation of genes involved in second-
ary metabolism (Fang et al. 2020). It has been suggested 
that OsMYB30 is a regulator of root cell elongation 
under ROS signals (Mabuchi et al. 2018) and root hair 
elongation under stress in Arabidopsis (Xiao et  al. 

Table 2 List of known genes potentially related to allelopathy within 0.15 Mb distance interval from each QTL lead marker

Locus ID Description Gene symbol QTL Reference

Os05g0132700 R2R3‑MYB TRANSCRIPTION FACTOR 52 2R_MYB52 4

Os02g0623400 G1 LIKE PROTEIN 3 G1L3 2 Sultana et al (2023), 
Fang et al. (2009)

Os02g0624300 R2R3‑type MYB transcription factor MYB30 2

Os02g0626100 Phenylalanine ammonia‑lyase 1 OsPAL1 2

Os02g0626400 Phenylalanine ammonia‑lyase OsPAL 2

Os02g0626600 phenylalanine ammonia‑lyase 3 OsPAL3 2 Sultana et al. (2023)

Os02g0627100 Phenylalanine ammonia‑lyase 4 OsPAL4 2

Os02g0589000 Lecithin:cholesterol acyltransferase family protein 1 Sultana et al. (2023)

Os02g0589700 Lecithin:cholesterol/phospholipid:diacylglycerol acyltransferase domain containing protein 1

Os02g0590000 Lecithin:cholesterol/phospholipid:diacylglycerol acyltransferase domain containing protein 1

Os02g0590200 Lecithin:cholesterol/phospholipid:diacylglycerol acyltransferase domain containing protein 1

Os02g0590400 Lecithin:cholesterol acyltransferase family protein 1
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2021). More interestingly, OsMYB30 has been impli-
cated in the biosynthesis of the phenolic compound 
stilbene in grapevine (Mu et al. 2023).

qAll-5 covers a genomic area that comprises 
21 annotated genes (Additional file  11: Table  S5). 
Os05g0131500, coding for a ferroportin was localised 
next to the leader marker position, but the role of this 
protein in allelopathy has not been reported previously 
(Additional file 11: Table S5).

No genes identified previously as associated with 
allelopathy have been detected in the region near 
qAll-3 (Additional file 11: Table S5).

Discussion
The management of damaging weeds in rice cultivation 
poses a significant challenge across various regions. 
Efforts to control these weeds while minimizing her-
bicide use are highly desirable, as this approach can 
help prevent the development of herbicide resistance 
and contribute to cost reduction in crop production. 
Some rice varieties can exhibit allelopathy and it has 
emerged as a potential solution for weed management 
in rice fields. When barnyardgrass seedlings were co-
cultivated with specific rice varieties, they exhibited a 
reduction in root growth, highlighting the potential of 
allelopathy as a promising avenue for weed control in 
rice cultivation.

In this study, we examined the allelopathic potential 
of 171 japonica rice varieties by assessing their abil-
ity to inhibit the growth of barnyardgrass roots when 
co-cultured. Allelopathy can be induced by several fac-
tors as stress or nutrient deficiency (Song et  al. 2008). 
It has been demonstrated that plant defense signalling 
hormones, such as jasmonic acid or salicylic acid, can 
induce allelopathy (Fang et  al. 2009). To avoid induc-
tor factors affecting the allelopathic activity, the bio-
assays were performed under controlled laboratory 
conditions. We performed analysis at early develop-
mental stages as our goal was to find rice varieties 
with allelopathic potential, and the genes responsible 
for this potential, to improve the ability of rice seed-
lings to resist paddy weeds as early as possible in the 
field to provide a competitive advantage for rice by 
inhibiting the growth of competing weeds. Our find-
ings revealed a substantial variation in the inhibition of 
barnyardgrass root growth when co-cultured with the 
different varieties. Within this collection, we identified 
novel allelopathic potential in varieties, as Ganao.

We employed GWAS to uncover genetic variants 
linked to the interaction between rice and barnyardgrass. 
The varieties we investigated were part of a previ-
ously established japonica collection, which encom-
passes those typically grown in temperate climates 

(Reig-Valiente et al. 2018). This collection has previously 
been utilized successfully, using a panel of 1713 SNPs, to 
identify genetic polymorphisms associated with various 
agronomic traits and serves as a valuable resource for 
pinpointing genetic factors responsible for the variations 
in agronomic traits within these regions (Reig-Valiente 
et  al. 2018). In this case, to facilitate a more precise 
phenotypic-genotypic association analysis, we con-
ducted whole-genome resequencing of the selected rice 
varieties, enabling the creation of a high-density SNP 
panel. As a result, we used a high-density SNP panel and 
identified four QTLs as candidate to play a role in the 
interaction between barnyardgrass and rice in japonica 
temperate rice.

Among these QTLs, qAll-2b stands out as it encom-
passes a cluster of four PAL coding genes associated 
with phenylpropanoid synthesis, which are compounds 
known to be involved in allelopathy. The first steps in the 
synthesis of phenylpropanoid-derived compounds are 
catalyzed by PAL, cinnamate 4-hydroxylase (C4H), and 
p-coumaroyl coenzyme A ligase (4CL). In this context 
PAL plays a pivotal role in the phenylpropanoid pathway, 
responsible for synthesizing various secondary metabo-
lites. PAL facilitates the deamination of phenylalanine, 
an essential amino acid, to produce trans-cinnamic 
acid, a crucial precursor for a diverse array of phenolic 
compounds, including flavonoids, lignin, and other phe-
nylpropanoid derivatives. These compounds are inte-
gral to the allelopathic properties of rice. Earlier studies 
have also highlighted the positive regulatory role of PAL 
in rice’s allelopathic potential (Fang et  al. 2013; Zhang 
et  al. 2019b). PAL exhibits up-regulation in hydroponic 
systems in response to barnyard grass roots (Zhang 
et al. 2019b; Sultana et al. 2023). Additionally, when the 
expression of OsPAL is silenced, it results in reduced 
allelopathic activity from donor rice to barnyard grass 
(Fang et  al. 2020). Notably, PAL is part of a multi-gene 
family in plants, with four members located on chromo-
some 2, and these were identified in qAll-2b.

In our association analysis, we detected two R2R3-
MYB transcription factors within qAll-2b and 5. Prior 
studies have demonstrated the role of MYB transcription 
factors in regulating genes involved in the plant phenyl-
propanoid metabolic pathway. Specifically, R2R3-MYB 
factors are known to govern genes related to secondary 
metabolism (Fang et  al. 2020). For instance, MYB57, an 
R2R3-MYB transcription factor, has been shown to tran-
scriptionally regulate MAPK11, which interacts with 
PAL2;3 and modulates rice allelopathy (Fang et al. 2020). 
MYB30, on the other hand, is implicated in root hair 
development and functions within a MYB30-EIN3 antag-
onistic module in Arabidopsis (Xiao et al. 2021).



Page 11 of 13García‑Romeral et al. Rice           (2024) 17:22  

qAll-5 represents a particularly promising locus, hous-
ing a genomic region containing 21 genes. While some of 
these genes may have a role in allelopathy as 2R_MYB52, 
others, such as ferroportin found next to the lead marker 
position, have not been previously associated with this 
context. Additional investigation is required to elucidate 
their involvement in allelopathy.

Contents of allelochemicals in rice have been known 
to be varietal dependent (Kato-Noguchi et  al. 2010). 
Several secondary metabolites have been found in root 
exudates that include phenolic acids, terpenes, fatty 
acids and indoles that have been considered as poten-
tial allelochemicals (Macías et  al. 2007). Among them, 
momilactone B is present in roots exudates from dif-
ferent varieties and it has been proposed that the allel-
opathic activity of rice may depend primarily on the 
secretion level of momilactone B (Kato-Noguchi et  al. 
2010). The highly allelopathic potential line PI312777 
also secretes momilactone B in the root exudates when 
cocultured with barnyadgrass. The GWAS analysis of 
the japonica temperate collection identified candidate 
genes for allelopathy that were related to phenolic acid 
and lipid metabolism, but not genes directly involved in 
the synthesis of momilactones were found. Our findings 
point to the participation of phenolic acids in allelopathy. 
Whether they are sufficient or they need to be accompa-
nied by other chemicals to produce allelopathy, needs to 
be investigated.

Previous QTL analysis was conducted using RFLP 
markers in a bi-parental population resulting from 
the cross between PI31277 and Rexmont (Ebana et  al. 
2001). This analysis identified seven QTLs, with one of 
them located on chromosome 5, approximately 0.65 Mb 
away from qAll-5. Our use of a diverse panel of rice 
varieties, combined with genome sequencing tech-
niques, significantly expands the potential to pinpoint 
QTLs associated with allelopathy with a higher degree 
of precision. Given the lower precision of the previously 
utilized technique compared to the use of a high-den-
sity panel of SNPs for GWAS analysis, it is highly likely 
that both QTLs are the same. The fact that this QTL has 
been identified in two studies, one of which employed 
a wide genetic diversity, strengthens the case for the 
significant role of this genomic region in allelopathy. 
Moreover, a detailed examination of the allelic content 
in the leader marker of qAll-5 revealed that 70 varieties 
carrying one allele inhibited Echinochloa root growth by 
24.9%, in contrast to 9.1% for the 89 varieties carrying 
the other allele. qAll-5 emerges as a promising candi-
date for genetic breeding focused on enhancing allel-
opathy in rice.

Conclusions
We have assessed the allelopathic potential of a collec-
tion of japonica rice adapted to temperate regions and 
identified varieties that can inhibit the root growth of 
barnyardgrass when co-cultured. The association anal-
ysis using a high-density panel of markers mapped 4 
QTLs that may help to understand allelopathy mecha-
nism of action. These QTLs indicate that the phe-
nylpropanoid synthesis pathway is taken part in the 
allelopathic potential of varieties within this collection. 
Among the identified QTLs, qAll-2b and qAll-5 are 
robust and constitute candidates to initiate a breed-
ing program. The discovery of rice genotypes possess-
ing allelopathic potential against weeds, along with the 
corresponding identification of associated QTLs, opens 
the opportunity to initiate a breeding program to incor-
porate allelopathy in rice while maintaining grain yield 
and quality that, ultimately, will benefit farmers as well 
as the environment as a powerful tool to combat para-
sitic weeds providing new weed management strategies 
in agriculture.
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Additional file 1. Fig. S1: Rice sterilized seeds by immersion in a 2.5% 
sodium hypochlorite solution for 30 min on the first day. The seeds were 
placed equidistantly in Petri dishes containing a layer of perlite and 20 ml 
MES 1 mM, pH 6.0. On the fourth day, batches comprising 16 accessions 
were placed in a plastic box shielded with a transparent plastic cover and 
incubated in a growth chamber. On the same day, sterilized barnyardgrass 
seeds were germinated in Petri dishes and incubated in a growth cham‑
ber. On the seventh day, barnyardgrass seedlings showing 6–8 mm root 
were equidistantly placed in small holes in the perlite layer. As a control, 
barnyardgrass seedlings were incubated in the absence of rice. All plates 
were incubated for an additional week. On the fifteenth day, root length 
of rice and barnyardgrass plants (from co‑cultured and control plates) was 
measured.

Additional file 2. Fig. S2: (A) Correlation between the root inhibition 
observed between replicates. (B) Correlation between rice and barn‑
yardgrass root length of plants from a subset of the collection.

Additional file 3. Fig. S3: Neighbour‑Joining tree of 171 rice accessions. 
The growth inhibition ability is indicated in grey bars, the group structure 
membership is indicated in circles for each variety where the proportion 
of membership to each group is indicated with colours. The country of 
origin of each variety is shown.

Additional file 4. Fig. S4: Estimated LD decay in the collection, expressed 
as decay of  r2.
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Additional file 5. Fig. S5: Estimated Delta K (∆K) based on the STRU CTU 
RE analysis.

Additional file 6. Fig. S6: Violin plot. Comparison of the allele content at 
position 21850604 on chromosome 4.

Additional file 7. Table S1: List of cultivars included in the analysis with 
their country of origin, inhibition percentage of barnyardgrass root inhibi‑
tion. Membership to K groups defined by STRU CTU RE is indicated.

Additional file 8. Table S2: Stem length of barnyardgrass plants co‑
cultured with different rice varieties. Stem lengths of plants grown in the 
presence of rice were compared with plants grown without rice and the 
p‑value was calculated. Statistical analysis is shown.

Additional file 9. Table S3: Mean Fst values obtained for each structure 
group.

Additional file 10. Table S4: List of SNPs significantly associated with the 
barnyardgrass root growth inhibition.

Additional file 11. Table S5: List of annotated genes within 150 kb 
distance interval from the SNP marker peak.
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