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Abstract 

In this study, we investigated the function of OsAAI1 in yield and drought tolerance by constructing overexpres-
sion line OE-OsAAI1 and mutant line osaai1. Bioinformatics analysis showed that the AAI gene-OsAAI1- belongs 
to the HPS_like subfamily of the AAI_LTSS superfamily, and OsAAI1 was localized in the nucleus. The expression 
of OsAAI1 was significantly induced by ABA and drought stress. OsAAI1 overexpression (OE19) significantly increased, 
and gene mutant (osaai1-1) repressed plant height, primary root length, lateral root number, grain size and yield 
in rice. Moreover, physiological and biochemical analyses showed that osaai1 was sensitive to drought stress, 
while OE19 enhanced the drought tolerance in rice. DAB and NBT staining revealed that under drought treatment, 
osaai1 accumulated a large amount of ROS compared with the wild type, while OE19 accumulated the least, and CAT, 
APX, GPX, GR activities were higher in OE19 and lower in osaai1, suggesting that OE19 improves rice tolerance 
to drought stress by enhancing ROS scavenging ability. OE19 also induce the expression of ABA-mediated regulatory 
pathway genes and enhance accumulation of ABA content in rice seedling. Predictably, OE19 displayed enhanced 
sensitivity to ABA, and ROS accumulation was significantly higher than in wild type and osaai1 under 3 µM ABA treat-
ment. Thus, these results suggest that OsAAI1 is a positive regulator of rice yield and drought tolerance dependent 
on the ABA-mediated regulatory and ROS scavenging pathway.
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Background
Rice is one of the most important food crops in the world, 
and more than half of the world’s population depends on 
rice as a staple food (Gross and Zhao 2014; Lyman et al. 
2013). Rice requires large amounts of water to maintain 

normal growth and development (Lafitte et  al. 2006). 
During the growth of rice, water deficiency can affect 
its yield and quality, and in severe cases can even lead 
to plant death (Krasensky and Jonak 2012). Drought is 
increasingly becoming one of the major causes of crop 
productivity loss due to global climate changes that have 
led to uneven distribution of water globally (Fukao and 
Xiong 2013). Therefore, it is a very urgent task to use the 
resilience of rice to ensure yield stability under unfavora-
ble environmental conditions (Chaves et al. 2003).

Abscisic acid (ABA), a class of sesquiterpene carbox-
ylic acids produced by oxidative cleavage of carotenoids, 
is a key hormone in plant growth and development (Li 
and Walton 1990). ABA not only plays a crucial role in 
seed dormancy, seed germination, root structure devel-
opment, embryo maturation, and stomatal opening and 
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closing (Dejonghe et  al. 2018; Hsu et  al. 2021), but also 
plays a prime mediator of drought stress (Boominathan 
et al. 2004). Numerous studies have shown that drought 
conditions induce the expression of ABA biosynthetic 
genes to accumulate ABA and regulate stomatal closure 
for the purpose of water conservation (Hsu et  al. 2021; 
Iuchi et al. 2001; Murata et al. 2015).

Reactive oxygen species (ROS), which include the 
superoxide anion radical  (O2

−), hydroxyl radical  (OH−), 
and hydrogen peroxide  (H2O2), regulate plant growth 
and development, and protect against abiotic and biotic 
stresses (Mittler et  al. 2011; Tanaka et  al. 2006; Tor-
res and Dangl 2005). Production of ROS is enhanced in 
plants after suffering from various abiotic stresses (such 
as drought, salt, and temperature) (Mittler et  al. 2004). 
However, excessive accumulation of ROS is harmful to 
cells and causes oxidative damage to lipids, DNA, and 
proteins (Apel and Hirt 2004). To balance ROS produc-
tion and destruction, plants have evolved an antioxidant 
system such as antioxidant enzymes system (Xu et  al. 
2013). ROS scavenging enzyme systems in plants mainly 
include catalase (CAT), ascorbate peroxidase (APX), glu-
tathione peroxidase (GPX), glutathione reductase (GR) 
and glutathione sulfotransferase (GST) (Foyer and Noctor 
2005; Mittler 2002; Xu et al. 2018). It has been suggested 
that there may be some mechanism by which ROS and 
ABA interact and regulate each other (Chen et al. 2022a, 
b). Overexpression of rice ABA receptor 6 (OsPYL6) can 
improve drought tolerance by increasing ABA content 
and positively regulating ROS detoxification and mem-
brane stability (Santosh et  al. 2021). Overexpression of 
UDP-glycosyltransferase (UGT3) can enhance drought 
tolerance through modulating ABA synthesis and scav-
enging ROS in rice (Wang et al. 2021). In addition, ROS 
are shown to participate in ABA-mediated stomatal clo-
sure (Postiglione and Muday 2020). The production and 
accumulation of apoplastic ROS depend on ABA signal-
ing (Wu et al. 2020). ROS can enhance ABA signaling by 
acting as a second messenger, ROS coordinates with ABA 
to regulate stomatal closure in response to drought (Liu 
et al. 2022), suggesting both ABA and ROS are important 
in resisting stresses.

Alpha-Amylase Inhibitors (AAI), Lipid Transfer (LT) 
and Seed Storage (SS) Protein family (AAI_LTSS Protein 
family) is a family of proteins unique to higher plants, 
total contains 5 members, which named Alpha-Amylase 
Inhibitors (AAIs) and Seed Storage (SS) Protein subfam-
ily (AAI_SS), Hydrophobic Protein from Soybean (HPS)-
like subfamily, Non-specific lipid-transfer protein type 2 
(nsLTP2) subfamily, Non-specific lipid-transfer protein 
type 1 (nsLTP1) subfamily and Non-specific lipid-trans-
fer protein (nsLTP)-like subfamily respectively. Proteins 
in this family not only play important roles in defending 

plants from insects and pathogens, but also involved in 
lipid transport between intracellular membranes, and 
nutrient storage (Kader 1996; Kreis et  al. 1985; Wirtz 
1991). AAI genes-belongs to the AAI_LTSS superfamily-
encode three domains including LTP2 domain, hydro-
phobic seed domain, and trypsin alpha amylase domain 
(Lu et al. 2020; Qanmber et al. 2019). The LTP2 domain 
is characterized by containing an eight cysteine pattern 
(8CM) backbone as shown below, C-Xn-C-Xn-CC-Xn-
CXC-Xn-C-Xn-C (Fleury et al. 2019; Jose-Estanyol et al. 
2004). The positions of the eight cysteine residues fol-
low a conservative pattern, in which the third and fourth 
cysteines are adjacent in the polypeptide chain, and the 
fifth and sixth cysteines are divided by only one residue 
(Jose-Estanyol et  al. 2004). Plant sequences possess-
ing this motif belong to various proteins with different 
functions, including enzyme inhibition, lipid transfer, 
cell wall structure and storage protection (Barciszewski 
et al. 2000; Henrissat et al. 1988; Jose-Estanyol et al. 2004; 
Shewry et al. 1995; Shewry and Tatham 1990). However, 
there were few functions reported in AAI genes with 
the hydrophobic seed domain or trypsin alpha amyl-
ase domain for now. In a recent study, cotton GhAAI66 
protein was found to contain LTP2 domain, hydropho-
bic seed domain and trypsin alpha amylase domain and 
induced early flowering in cotton (Qanmber et al. 2019). 
The HPS_like subfamily, composed of proteins with 
similarity to Hydrophobic Protein from Soybean (HPS), 
is a small hydrophobic protein with unknown func-
tion related to cereal-type alpha-amylase inhibitors and 
lipid transfer proteins (Baud et al. 1993). Except for HPS, 
members of this subfamily include a dark-inducible pro-
tein (LeDI-2) from Lithospermum erythrorhizon (Yazaki 
et al. 2001), a hybrid proline-rich protein (HyPRP) from 
maize (Jose-Estanyol et al. 1992), rice RcC3 protein (Xu 
et  al. 1995), and maize ZRP3 protein (John et  al. 1992). 
HyPRP is an embryo-specific protein that contains an 
N-terminal proline-rich domain and a C-terminal HPS-
like cysteine-rich domain (Jose-Estanyol et  al. 1992). It 
has been suggested that HyPRP may be involved in the 
stability and defense of the developing embryo (Jose-
Estanyol et  al. 1992). LeDI-2 is a root-specific protein 
that may be involved in regulating the biosynthesis of shi-
konin derivatives in L. erythrorhizon (Yazaki et al. 2001). 
Maize ZRP3 and rice RcC3 are root-specific proteins 
(John et al. 1992; Xu et al. 1995). Overexpression of RCc3 
gene accelerates root growth hormone transport and 
increases the rate of growth hormone biosynthesis in rice 
root, which improves the root structure and enhances 
plant tolerance to salt stress (Xu et al. 1995).

In this study, we determined and functionally charac-
terized an AAI gene that belongs to the HPS_like sub-
family, named it as OsAAI1 (LOC_Os04g55159) in rice. 
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Our results provide a theoretical basis for developing 
drought-resistant and high-yield transgenic rice with a 
potential application value.

Results
Bioinformatics Analysis of OsAAI1
The amino acid sequence of the rice OsAAI1 gene was 
retrieved and downloaded from the NCBI website. After 
NCBI blast online comparison, 22 and 9 homologous 
genes were screened in Oryza sativa L. and Arabidop-
sis, the physiological and biochemical properties of these 
homologs were analyzed and speculated by the online 
protein physicochemical property prediction website 
ExPasy ProtParam (Additional file 1: Table S1). The con-
served structural domains of the OsAAI1 proteins were 
also analyzed using the online software SMART (http:// 
smart. embl- heide lberg. de/), and the results showed that 
the conserved AAI domain were contained at amino 
acids 211–289. Further validation of the conserved struc-
tural domain at NCBI CDsearch revealed that the pro-
tein belongs to the HPS_like subfamily of the AAI_LTSS 
superfamily (Additional file 2: Fig. S1).

Sequence alignment of the amino acid sequence of 
OsAAI1 with other members of the AAIs family in Oryza 
sativa L. and Arabidopsis thaliana using the software 
GeneDOC showed that OsAAI1 shares a highly con-
served AAI domain with all these proteins (Fig. 1A). The 
OsAAI1 protein sequences retrieved on NCBI were ana-
lyzed by BLAST alignment with some of the AAIs family 
proteins from the Pteridophyta, the monocotyledonous 
plant Oryza sativa and Zea mays, and the dicotyledon-
ous plant Glycine max and Arabidopsis thaliana, and 100 
homologous proteins were screened. The online software 
MEME was used to analyze the 100 homologous pro-
teins, the common structural sequences of all proteins in 
motif 1,2,3 were found among all motifs (Fig. 1B, Addi-
tional file 2: Fig. S2A–C). MEGA 7.0 software was used 
to construct an evolutionary tree for the 100 homologous 
proteins and OsAAI1 proteins. Then the constructed 
evolutionary tree and the protein conserved structural 
domain elements were combined and touched up by 
TBtools software to obtain the phylogenetic tree with 
protein conserved structural domain elements (Fig.  1B, 
Additional file 2: Fig. S2D).

Tissue‑Specific and Stress‑Responsive Expression of OsAAI1
The promoter analysis of OsAAI1 found that the pro-
moter contained abscisic acid (ABA) response elements, 
MYB binding site involved in drought-inducibility and 
MYBHv1 binding sit, suggesting that OsAAI1 may be 
induced by ABA and drought stress during rice growth 
and development (Additional file 2: Fig. S3E). To further 
confirm the effects of phytohormones and abiotic stresses 

on OsAAI1 expression, qRT-PCR was applied to examine 
relative expression levels of OsAAI1. The results showed 
that OsAAI1 can be induced by ABA, IAA, dehydration, 
PEG,  H2O2, mannitol, low temperature (4  °C) and high 
temperature (42 °C) in rice at different time points after 
treatment, implying that OsAAI1 is responsive to abiotic 
stress and ABA pathway (Fig. 2A–H). To determine the 
spatiotemporal expression pattern of OsAAI1 under nor-
mal growth conditions. We extracted total RNA from dif-
ferent periods and different parts of rice and performed 
qRT-PCR analysis. The data indicated that OsAAI1 was 
expressed in all of tissues tested and showed higher levels 
in young root compared with other tissues (Fig. 2I), sug-
gesting that OsAAI1 gene may play an important role in 
rice root development. This is basically the same as our 
predictive analysis results (Additional file 2: Fig. S3A–D).

Subcellular Localization of OsAAI1
In order to detect the subcellular localization of OsAAI1 
in plant cells, CDS sequence of OsAAI1 was fused with a 
Green Fluorescent Protein (GFP) reporter gene and tran-
siently expressed in rice protoplast under the control of a 
strong 35S promoter. The results showed that unlike the 
signal for free GFP, which was found in the whole cell, the 
fluorescence signal of the OsAAI1-GFP fusion protein 
was localized in the nucleus (Fig. 3). This is basically the 
same as our predictive analysis results (Additional file 1: 
Table  S1). This result indicates that OsAAI1 may have 
multiple functions in rice.

Phenotypic Analysis of Transgenic Lines at Seedling Stage
To further explore the function of OsAAI1 in rice growth 
and development, we constructed OsAAI1 gene edit-
ing vector and overexpression vector through molecu-
lar biology, and obtained osaai1 mutant lines (osaai1-1, 
osaai1-2, osaai1-3) and overexpression lines (OE2, OE3, 
OE6, OE9, OE18, OE19) through genetic transforma-
tion. Sequence analysis showed that osaai1-1, osaai1-2, 
osaai1-3 all deleted a base T at 388 bp downstream of 
ATG promoter. In addition, osaai1-2 inserted a base A 
between 297 bp and 298 bp downstream of the promoter 
ATG, and osaai1-3 inserted a base G between 840 bp 
and 841 bp downstream of the promoter ATG (Fig. 4A, 
Additional file  2: Fig. S4). The observation of osaai1 
mutant seedlings with normal growth for 14 days found 
that the phenotypes of the three mutant lines were the 
same (Additional file 2: Fig. S5A), so osaai1-1 (hence to 
refer as osaai1) was selected for subsequent research and 
analysis.

We performed qRT-PCR on wild-type Zhonghua 11 
(ZH11) and transgenic lines that grew for seven days 
to detect the expression of this gene in different lines. 
The results showed that the expression of this gene was 

http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/


Page 4 of 21Long et al. Rice           (2023) 16:35 

Fig. 1 Phylogenetic tree and homologous sequence alignment of OsAAI1. A Homology comparison of OsAAI1 with Amino Acid Sequences 
in Oryza sativa L. and Arabidopsis (All sequence). Black means the conservative rate is 100%, green represents a conservative rate of 70–100% 
(excluding 100%), grey represents a conservative rate of 50–70% (excluding 70%). B Evolutionary tree of OsAAI1 homologous genes in Oryza sativa 
L. and Arabidopsis.
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Fig. 2 Response of OsAAI1 to stress and hormones and its differential expression in space and time. A–H Changes in OsAAI1 expression from 0 h 
to 48 h after 100 mM Mannitol, 4 °C, 42 °C, 20% PEG, dehydration, 1 mM  H2O2, 10 nM IAA, and 100 µM ABA treatments. I Spatiotemporal differential 
expression of OsAAI1 in rice. (Asterisks indicate a statistically significant difference compared with ZH11. **P < 0.01, ***P < 0.001, ****P < 0.0001; 
One-way ANOVA)
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significantly up-regulated in the overexpression line 
(OE19) compared to the ZH11, while it was significantly 
down-regulated in the mutant line (osaai1) due to early 
termination of transcription (Fig.  4B, Additional file  2: 
Fig. S5B, C). To further determine the biological function 
of OsAAI1, we performed statistical observation and data 
analysis on ZH11, osaai1 and OE19 grown normally for 
14 days. The results showed that osaai1 showed dwarfing 
in plant height compared with ZH11 and OE19, and this 
difference may persist until later stages of whole develop-
ment (Additional file  2: Fig. S6A–E). In addition, OE19 
had better growth in primary root length, total root 
length, and adventitious root number than ZH11 and 
osaai1 (Fig. 4C–G).

Analysis of Agronomic Traits in OsAAI1
To determine whether the dwarfed phenotype of osaai1 
would continue to affect the entire growth and devel-
opment of rice. We further observed and statistically 

analyzed the plants at the tillering, heading and mature 
stage, and the results showed that plant height, leaf 
length and leaf width of osaai1 decreased compared with 
ZH11 at the tillering stage, and conversely, these traits 
were increased significantly in OE19. At the heading 
stage, plant height of osaai1 was still lower than ZH11, 
while the height of OE19 was not significantly differ-
ence compared with ZH11 (Fig. 5A, Additional file 2: Fig. 
S7A–C). Pollen viability of wild-type and transgenic lines 
at flowering period was stained to determine the pollen 
development of each line, and the results showed that the 
pollen staining rate of osaai1 (44.33%) was only 65% of 
that of ZH11 (67.96%), while the staining rate of OE19 
(90.30%) was 133% of that of ZH11 (Additional file 2: Fig. 
S7D, E). This indicates that OsAAI1 may play an impor-
tant role in rice pollen development. At mature stage, 
there were no significant differences between wild-type 
and transgenic lines in plant height, flag leaf length, top 
second leaf length, top third leaf length, flag leaf width, 

Fig. 3 OsAAI1 subcellular localization. Empty vector 35S::GFP and the 35S::OsAAI1-GFP fusion were transiently expressed in rice protoplasts. 
The right panels show the fluorescent signal from the unfused GFP control (E, F), which is distributed throughout the cell. The left panels show 
the fluorescent signal from OsAAI1-GFP A–D, which localizes in the nucleus. (GFP fluorescence was detected at 488 nm excitation and 561 nm 
emission wavelength. Bars = 10 µm)

(See figure on next page.)
Fig. 4 Phenotypic analysis of transgenic lines at seedling stage. A Schematic diagram of OsAAI1 gene structure of mutant lines (osaai1-1, osaai1-2 
and osaai1-3). B Schematic diagram of OsAAI1 gene structure of overexpression lines and relative expression of osaai1, ZH11, and OE19 using 
qRT-PCR analysis. C Phenotypes of osaai1, ZH11, and OE19 grown normally for 14 days. Bars = 4.5 cm D Plant height (cm), E Primary root length 
(cm), F Total root length (cm) and G Adventitious root/plant(n) of osaai1, ZH11, and OE19 tested in C. (Asterisks indicate a statistically significant 
difference compared with ZH11. **P < 0.01, ***P < 0.001, ****P < 0.0001; One-way ANOVA).
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Fig. 4 (See legend on previous page.)
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top second leaf width and top third leaf width, while the 
spike length of OE19 was significantly longer than that 
of ZH11 and osaai1 (Additional file 2: Fig. S8A–C, Addi-
tional file  1: Table  S2), whereas there were highly sig-
nificant differences in seed setting rate, thousand grain 
weight, grain length, and grain width between wild-type 
and transgenic lines (Fig.  5C–G, Additional file  2: Fig. 
S7D, F, Additional file  2: Fig. S9A–C, Table  1), These 
results suggest that overexpression of OsAAI1 improves 
rice yield through regulating the development of grain 
length and grain width. We weighed the fresh weight of 
the roots of each line at mature stage and found that the 
roots of OE19 were the heaviest and the longest (Fig. 5B). 
This indicates that OsAAI1 gene not only regulates root 
development at the seedling stage but also at the mature 
stage. In summary, overexpression of OsAAI1 signifi-
cantly enhances rice yield by regulating root and grain 
development.

OsAAI1 Overexpression Improves Rice Tolerance 
to Drought Stress
To verify the response of OsAAI1 to drought stress, ZH11, 
osaai1 and OE19 seedlings grown normally for 20 days 
were subjected to drought treatment, and after 7 days of 
dehydration and 7 days of water-rich recovery treatment 
(Fig.  6A), OE19 grew well and had higher survival rate 
(77.8%) compared with ZH11 (44.1%), whereas osaai1 
was severely inhibited in growth and the survival rate was 
low at 11.4% (Fig.  6B). Under normal growth, there was 

no significant difference in chlorophyll and MDA content 
between ZH11, osaai1 and OE19, but after drought treat-
ment, the difference in chlorophyll content between the 
wild-type and transgenic lines was highly significant, with 
higher chlorophyll content in OE19 and significantly lower 
chlorophyll content in osaai1 compared with the drought-
treated ZH11 (Fig.  6C). The MDA content was lower in 
OE19 and significantly higher in osaai1 compared to the 
drought-treated ZH11 (Fig.  6D). We measured the dehy-
dration rate and water content of wild-type and transgenic 
lines grown for 20 days and found that osaai1 had the fast-
est water loss, followed by ZH11, and OE19 had the slow-
est water loss (Fig. 6E). Compared to ZH11 (water content 
was 5.88%), the final water content of osaai1 was 3.69% 
and OE19 was 7.43% (Fig.  6F). These results suggest that 
OsAAI1 plays a positive role in resistance to drought stress.

To investigate whether OsAAI1 overexpression affects 
the accumulation and scavenging of ROS under drought 
stress, the levels of hydrogen peroxide  (H2O2) and super-
oxide anion radical  (O2

−) were assessed by Diaminobezidin 
(DAB) and Nitroblue tetrazolium (NBT) staining. Under 
normal conditions, there was no significant difference 
in ROS accumulation between wild-type and transgenic 
lines. After drought treatment, a host of spots appeared 
on the osaai1 line compared to ZH11, while OE19 stain-
ing was the lightest, indicating that osaai1 accumulated a 
large amount of ROS, while the least amount of ROS was 
accumulated in OE19 (Fig. 6G–J). Relative quantification of 
ROS using imagej software and the results consistent with 
the above (Additional file 2: Fig. S10A–D, I–J). In conclu-
sion, OsAAI1 overexpression can enhance rice tolerance to 
drought stress and reduce ROS accumulation.

Overexpression OsAAI1 Improves Rice Tolerance 
to Osmotic Stress Tolerance
Osmotic stress is one of the main factors causing damage 
to plants under drought stress (Zhu 2016). To further verify 
the osmotic stress tolerance of OsAAI1, each rice line was 
treated with 10% and 20% Polyethylene glycol (PEG) 6000 
(hence to refer as PEG) for 14 days to observe the phenotype 
and perform statistical analysis. The results showed that 
10% PEG treatment promoted the root growth of OE19 and 
severely inhibited the root growth of osaai1, while the effect 
on ZH11 was not significant. Compared with the normal 
treatment, the primary roots of OE19 under 10% PEG treat-
ment increased by an average of 2.55 cm and those of ZH11 

Table 1 Statistics of agronomic traits of wild-type and 
transgenic lines

Pl = Panicle length (cm), n = 3. Tgw = Thousand grains weight (g), Gl = Grain 
length/twenty (cm), Gw = Grain width/twenty (cm), (Asterisks indicate a 
statistically significant difference compared with ZH11. **P < 0.01, ***P < 0.001, 
****P < 0.0001; One-way ANOVA)

Genotype Pl Tgw Gl Gw

osaai1-1 16.17**** 22.31**** 13.91**** 6.42****

osaai1-2 17.30*** 23.30** 13.22**** 6.33****

osaai1-3 15.45**** 23.03*** 13.60**** 6.64****

ZH 11 17.67 24.42 14.97 7.02

OE 6 18.15* 26.24**** 15.71**** 7.23****

OE 9 18.14* 25.67*** 15.52**** 7.31****

OE 18 18.93**** 26.91**** 15.65**** 7.22****

OE 19 18.17* 25.27*** 14.87**** 7.44****

Fig. 5 Analysis of agronomic traits in OsAAI1. A Phenotype diagram of osaai1, ZH11, and OE19 at tillering, heading and mature stage. Bars = 10 
cm. B Phenotype diagram of root of osaai1, ZH11, and OE19 at mature stage. Bars = 10 cm. C Phenotype diagram and statistical analysis of grain 
length and grain width of osaai1, ZH11, and OE19, n = 20. Bars = 2.5 cm. D Statistical analysis of root weight, E thousand grain weight, F grain length 
and (G)grain width of each line at mature stage. (Asterisks indicate a statistically significant difference compared with ZH11. **P < 0.01, ***P < 0.001, 
****P < 0.0001; One-way ANOVA).

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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increased by an average of 1.28 cm, while those of osaai1 
decreased by an average of 2.35 cm (Fig. 7A, E). The growth 
of the wild-type and transgenic lines was inhibited under 
20% PEG treatment, with the mutant line being the most 
significantly inhibited and barely able to grow normally, 
OE19 showed the best growth compared to others (Fig. 7A, 
E, F). Physiological indicators were measured for each line 
treated with normal, 10% and 20% PEG for 14 days to assess 
the tolerance of wild-type and transgenic lines to different 
treatments. The chlorophyll content of ZH11, osaai1 and 
OE19 did not significant difference under normal treat-
ment, while the chlorophyll content of the osaai1 was 
highly significantly reduced compared to ZH11 under 10% 
PEG treatment, while the chlorophyll content of OE19 was 
highly significantly increased, even higher than that under 
normal treatment. The chlorophyll content of both the wild-
type and transgenic lines was significantly lower than that 
of the normal treatment under 20% PEG treatment, with 
osaai1 having the lowest chlorophyll content and OE19 hav-
ing the highest chlorophyll content (Fig. 7B). The MDA con-
tent of the wild-type and transgenic lines did not significant 
difference under normal treatment, but the MDA content of 
osaai1 was significantly increased under both 10% PEG and 
20% PEG treatment, while the MDA content of ZH11 was 
not significantly increased. It is noteworthy that the MDA 
content of OE19 showed a decreasing trend under 10% PEG 
treatment, and was even lower than the normal, although 
the MDA content of OE19 also showed an increase under 
20% PEG treatment, it was always lower than that of ZH11 
and osaai1 under the same treatment (Fig. 7C). There was 
no significant difference in proline content between wild-
type and transgenic lines under normal treatment, and pro-
line content was significantly higher in both wild-type and 
transgenic lines under 10% PEG and 20% PEG treatments, 
but OE19 accumulated the most proline in both 10% PEG 
and 20% PEG treatments (Fig.  7D). We further examined 
the changes of ROS-related scavenger enzymes (such as 
CAT, APX, GPX, GR) activities under each treatment, as 
shown in the Fig. 7G–J, the ROS-related scavenger enzymes 
activities of OE19 were significantly enhanced under 10% 
and 20% PEG treatment, while the ROS-related scavenger 
enzymes activities of osaai1 were significantly weakened. In 
conclusion, OsAAI1 overexpression can enhance rice toler-
ance to drought stress and osmotic stress by enhancing ROS 
scavenging ability.

OsAAI1 is Involved in the ABA‑Mediated Regulatory 
Pathway
To further verify whether the drought resistance of 
OsAAI1 was induced by ABA, we measured the ABA 
content of the wild-type and transgenic lines. The results 
showed that osaai1 had extremely lower ABA content 
and OE19 had significantly higher ABA content than 
ZH11(Fig. 8A, B). Many genes are involved in ABA bio-
synthesis in rice, such as 9-cis-epoxycarotenoid diox-
ygenase1-5(OsNCED1–5) (Parry et  al. 1990), abscisic 
aldehyde oxidse3 (AAO3), abscisic acid2 (ABA2), and 
zeaxanthin epoxidase1 (OsZEP1) (Schwartz et  al. 1997; 
Seo et  al. 2000). pyrabactin resistance 1-like5 (OsPLY5), 
PYL1, OsPLY7, OsPLY10 (Bhatnagar et  al. 2020; Di F 
et  al. 2018; Kim et  al. 2014; Verma et  al. 2019), pro-
tein phosphatase2c53 (OsPP2C53), OsPP2C68 (Min 
et  al. 2019; Xiong et  al. 2014). Cytochrome p450 96b4 
(OsCYP96B4), OsCYP714B1, aba 8′-hydroxylase2 (OsA-
BA8ox2) and OsABA8ox3 are vital for ABA degrada-
tion (Cai et  al. 2015; Magome et  al. 2013; Mega et  al. 
2015; Ramamoorthy et  al. 2011). The transcript levels 
of different ABA related genes were examined by qRT-
PCR in osaai1, OE19 and ZH11 lines. The crucial rate-
limiting enzyme family genes for ABA biosynthesis 
(OsNCED1–5) were found to be significantly up-regu-
lated in OE19, and the positive ABA biosynthesis-related 
genes AAO3, ABAao, and OsABA2 were down-regulated 
in osaai1 and up-regulated in OE19 compared with those 
in the ZH11(Fig.  8C). The ABA receptors OsPYL5 and 
OsPYL10 were both up-regulated in the transgenic lines 
and more significantly in osaai1, PYL1 expression was 
down-regulated in osaai1 and up-regulated in OE19, 
while the transcript levels of OsPYL7 was not obviously 
changed in osaai1 and OE19 (Fig.  8D). OsPP2C53 and 
OsPP2C68, negative regulators of ABA signaling, were 
most significantly up-regulated in osaai1 (Fig. 8D). ABA 
degradation-related genes OsCYP96B4, OsCYP714B1 
and OsABA8ox3 expression was up-regulated in osaai1 
and down-regulated in OE19, While the transcript levels 
of OsABA8ox2 was not obviously changed in osaai1 and 
OE19 (Fig. 8E). This indicates that OsAAI1 is involved in 
ABA biosynthesis, catabolism and signaling processes. 
Taken together, OsAAI1 responds to drought stress by 
inducing the expression of genes related to ABA biosyn-
thesis, catabolism and signaling, indicating that OsAAI1 

(See figure on next page.)
Fig. 6 Phenotypes, physiological indicators and staining of each line under drought treatment. A Transgenic and wild-type plants were subjected 
to severe drought stress without water for 7d and then recovered for 7d, n = 9 Bars = 10 cm. B Survival rates, C chlorophyll content, D MDA 
content of osaai1, ZH11, and OE19 tested in A. E Comparison of water loss rates for detached rosettes between transgenic and wild-type plants 
(n = 5 plants). F Comparison of relative water contents of detached rosettes of transgenic and wild-type plants (n = 5 plants). G‑J DAB and NBT 
staining of osaai1, ZH11, and OE19 tested in A. Bars = 1 cm. (Asterisks indicate a statistically significant difference compared with ZH11. **P < 0.01, 
***P < 0.001, ****P < 0.0001; One-way ANOVA).
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Fig. 6 (See legend on previous page.)
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is depend on ABA pathway to improve tolerance to 
drought stress in rice.

Overexpression of OsAAI1 is Sensitive to ABA
To investigate the sensitivity of OsAAI1 to ABA, we statis-
tically analyzed the growth status of wild-type and trans-
genic lines at 14 days of 3 µM ABA treatment. Under 
normal conditions, OE19 grew significantly better than 
osaai1 and ZH11, while under 3 µM ABA treatment, the 
plant height and primary root length of OE19 were sig-
nificantly lower than those of ZH11 and osaai1, and osaai1 
grew the best among all strains (Fig.  4C–G; Fig.  9A–G). 
We performed DAB and NBT staining of each line after 14 
days of 3 µM ABA treatment to assess the ROS accumu-
lation in each line. The results showed that OE19 of DAB 
and NBT staining was the darkest, followed by ZH11, and 
osaai1 was the lightest (Fig.  9H–K), indicating that more 
ROS accumulated in OE19. Relative quantification of ROS 
using imagej software and the results consistent with the 
above (Additional file  2: Fig. S10E–H, K–L).These results 
suggest that overexpression of OsAAI1 enhanced the sen-
sitivity to ABA.

Discussion
The Biological Function and Molecular Mechanism 
of the HPS_like Subfamily
Multiple sequence alignments and phylogenetic analysis 
indicated that OsAAI1 belongs to the HPS_like subfamily 
of the AAI_LTSS superfamily. Members of this gene family 
encode three domains including LTP2 domain, hydropho-
bic seed domain, and trypsin alpha amylase domain (Lu 
et al. 2020; Qanmber et al. 2019). The subfamily HPS_like 
is composed of HPS, a dark-inducible protein (LeDI-2) 
from Lithospermum erythrorhizon (Yazaki et  al. 2001), a 
hybrid proline-rich protein (HyPRP) from maize (Jose-
Estanyol et al. 1992), rice RcC3 protein (Xu et al. 1995), and 
maize ZRP3 protein (John et  al. 1992). There are a total 
of 22 AAI genes in the rice genome, among which only 
two genes had been reported (Additional file 1: Table S1). 
RCc3 (LOC_Os02g44310), which enhances salt toler-
ance in rice by regulating root structure (Xu et  al. 1995), 
and qLTG3–1  (LOC_Os03g01320) which involves in seed 
germination and show tolerance to several kinds of abi-
otic stresses (Fujino et al. 2008), but both of them specific 
molecular mechanism is unclear. The specific biological 
functions of the remaining 20 AAI genes have not been 
explored (Additional file  1: Table  S1). In this study, we 

report a rice AAI gene, OsAAI1 (LOC_Os04g55159), over-
expression of which improves rice root and shoot develop-
ment and regulates rice grain size development (Figs. 4C, 
E, 5B–D, Additional file  2: Fig. S9A–C, Table  1), thereby 
enhancing rice yield. However, the molecular mechanism 
of OsAAI1, that needs to be further studied.

OsAAI1 Confers Drought Tolerance Dependent 
on ABA‑Mediated Regulatory and ROS Scavenging 
Pathway
The plant hormone ABA plays a crucial role in the plant’s 
response to environmental stress (Fujita et  al. 2011; 
Gietler et al. 2020). There is an optimal level of ABA for 
root elongation (Zhang et al. 2014), l ABA concentration 
above a certain value will inhibit plant growth (Miao et al. 
2021). For the result that OE19 had higher plant height 
and longer primary root length than ZH11 and osaai1 
in seedling stage (Fig.  4C–G), this can be explained by 
the fact that the ABA content of OE19, although signifi-
cantly higher than ZH11 and osaai1 (Fig. 8A, B), was well 
below the threshold of ABA concentration that inhibits 
plant growth, and therefore the growth of OE19 was not 
inhibited. And for the result that OE19 have increased 
sensitivity to exogenous ABA (Fig.  9A–G), this can be 
explained by the fact that the addition of exogenous ABA 
to OE19 exceeded the optimal concentration of ABA for 
plant growth, and the addition of ABA can be considered 
as a stress treatment that moves them further away from 
this optimal concentration. In contrast, ZH11 and osaai1 
may have experienced a lower ABA concentration and 
the addition of ABA would have caused them less harm, 
which is consistent with the previous studies (Chen et al. 
2018; Jiang et al. 2019; Jiang et al. 2018). Overexpression 
of OsAAI1 increases the sensitivity of rice seedlings to 
exogenous ABA and increases the content of endogenous 
ABA (Fig.  8A, B Fig.  9A–G), indicating that OsAAI1 is 
involved in the ABA-mediated regulatory pathway. ABA 
biosynthesis is further converted from mevalonate by 
carotenoids (Dong et al. 2015), NCED is a key rate-limit-
ing enzyme for ABA biosynthesis (Parry et al. 1990), and 
NCED was first identified in the maize vp14 mutant (Tan 
et  al. 1997). OsNCED1 overexpression in rice enhances 
tolerance to heat stress during tasseling and flowering by 
increasing antioxidant capacity (Zhou et al. 2022). Over-
expression of BnNCED3 in oilseed rape promoted NO 
and ROS production in transgenic Arabidopsis thaliana 
and increased ABA accumulation thereby enhancing 

Fig. 7 Phenotypic and physiological indices under different concentrations of PEG treatment. A Phenograms and root development of osaai1, 
ZH11, and OE19 treated with 10% and 20%PEG for 14 days. Bars = 5 cm. B Chlorophyll content of osaai1, ZH11, and OE19 tested in A. C MDA 
content of osaai1, ZH11, and OE19 tested in A. D Proline content of osaai1, ZH11, and OE19 tested in A. E–H ROS-related scavenger enzyme 
(CAT, APX, GPX, GR) activity assay tested in A. (Asterisks indicate a statistically significant difference compared with ZH11. **P < 0.01, ***P < 0.001, 
****P < 0.0001; One-way ANOVA)

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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Fig. 8 OsAAI1 is involved in the ABA signaling pathway. A ABA content of osaai1, ZH11, and OE19. (**P < 0.01, ***P < 0.001, ****P < 0.0001, t-test) 
B qRT-RCR of ABA biosynthesis-related genes in osaai1, ZH11, and OE19. (**P < 0.01, ***P < 0.001, ****P < 0.0001, t-test) C qRT-RCR of ABA signal 
transduction-related genes in osaai1, ZH11, and OE19. D qRT-RCR of ABA catabolism-related genes in osaai1, ZH11, and OE19. (Asterisks indicate 
a statistically significant difference compared with ZH11. **P < 0.01, ***P < 0.001, ****P < 0.0001; One-way ANOVA)
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abiotic stress tolerance in A. thaliana (Xu and Cai 2017). 
In the present study, the key genes for ABA biosynthe-
sis, OsNCED1, OsNCED2, OsNCED3, and OsNCED5, 
were up-regulated in the transgenic lines and were most 
significantly up-regulated in the overexpression lines 

(Fig.  8C). In addition to NCED family genes, AAO3, 
ABAao, and OsABA2 also play active roles in ABA bio-
synthesis (Schwartz et al. 1997; Seo et al. 2000). The posi-
tive ABA biosynthesis-related genes AAO3, ABAao, and 
OsABA2 were found to be significantly upregulated in 

Fig. 9 Overexpression of OsAAI1 is sensitive to ABA. A–G Phenotypic and data statistical analysis of osaai1, ZH11, and OE19 treated with 3 µM 
ABA for 14 days. Bars = 2.5 cm. H–K DAB and NBT staining of osaai1, ZH11, and OE19 tested in A. Bars = 0.1 cm. (t-test, **P < 0.01, ***P < 0.001, 
****P < 0.0001)
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OE19 (Fig.  8C). In the ABA signaling pathway, OsPYL/
RCAR  is a functional ABA receptor that regulates ABA-
dependent gene expression in rice (Bhatnagar et al. 2020; 
Di F et al. 2018; Kim et al. 2014; Verma et al. 2019). In this 
study, PYL1 expression was down-regulated in osaai1, 
while significantly up-regulated in OE19 (Fig.  8D). In 
ABA catabolism, 8’ hydroxylation of ABA is the main 
mode of ABA degradation in plants (Kushiro et al. 2004), 
and OsABA8ox3 is a key gene in ABA catabolism (Cai 
et al. 2015). ABA degradation-related genes OsCYP96B4, 
OsCYP714B1 and OsABA8ox3 expression was up-reg-
ulated in osaai1 and down-regulated in OE19 (Fig.  8E). 
Type 2C protein phosphatase (PP2C) is a negative regu-
lator in ABA signaling (Li et  al. 2015). PP2C inhibits 
SnRK2s activity through dephosphorylation, resulting 
in inhibition of ABA response element binding proteins 
(AREBs) and ABA response element binding factors 
(ABFs) downstream of SnRK2s (Ma et al. 2009), thereby 
suppressing the expression of ABA-related genes (Min 
et  al. 2019). The negative regulators of ABA signaling 
ABIL1, OsPP2C53 and OsPP2C68 were most significantly 
up-regulated in osaai1 (Fig.  8D), showing that OsAAI1 
increases the tolerance of rice under drought stress 
by regulating the expression of ABA-mediated genes. 
These results suggest that OsAAI1 plays a crucial role in 
drought stress via the ABA-mediated regulatory pathway.

Reactive oxygen species are key signal transduction 
molecules in plants, but their excessive accumulation 
can cause irreversible damage to cells (Apel and Hirt 
2004; Mittler et al. 2011; Tanaka et al. 2006; Torres and 
Dangl 2005). Previous studies have shown that plants 
adapt to abiotic stresses by regulating ROS metabolism 
(Fang et al. 2015; Schmidt et al. 2013; Wu et al. 2012). For 
example, overexpression of MAPK kinase DSM1 in rice 
improves drought tolerance in rice at the seedling stage 
by regulating ROS clearance in rice (Ning et  al. 2010). 
the NAC transcription factor NTL4 enhances ROS accu-
mulation in response to drought stress by binding to the 
promoter of the gene encoding ROS biosynthetic enzyme 
(Lee et al. 2012). Recent studies (Aleem et al. 2022; Kuo 
et al. 2020; Wu et al. 2015; Xu et al. 2018) indicated that 
increased APX, GR, CAT and GPX activities can improve 
ROS clearance and maintain ROS homeostasis, thereby 
improving environmental-stress tolerance. In the present 
study, overexpression of OsAAI1 increased the activity of 
the ROS scavenging enzymes CAT, APX, GPX and GR in 
rice under osmotic stress. DAB and NBT staining results 
indicated that OsAAI1 overexpression accumulated 
less  O2

− and  H2O2 under drought stress than the wild 
type (Fig.  6G–J, Fig.  7G–J). These results indicate that 
OsAAI1 can reduce ROS accumulation under drought 
and osmotic stress. To sum up, these results showed that 

the functions of OsAAI1 in drought tolerance might be 
associated with the regulation of antioxidation ability.

Drought Stress Interact with ABA‑Mediated 
Regulatory and ROS Scavenging Pathway
In this study, we showed that OsAAI1 regulated root tip 
and leaf ROS levels (Fig.  6G–J, Fig.  9H–K) and altered 
ABA sensitivity in rice (Fig. 9A–G), which suggests that 
ROS alteration is correlated to ABA sensitivity. It has 
been reported that alterations in ROS levels can affect 
ABA biosynthesis and signaling, as well as change ABA 
sensitivity (Chen et al. 2020; Postiglione and Muday 2020; 
Song et al. 2014), and ABA can also regulate the expres-
sion of ROS producing and scavenging genes (Chen et al. 
2022a, b; Yu et  al. 2019). For instance, a link between 
ABA signaling and  H2O2 production via G-proteins that 
are shown to promote  H2O2 production but negatively 
regulate ABA response had been proved (Chen et  al. 
2004; Xu et  al. 2015). These data suggest that there are 
likely to be different mechanisms by which ABA signal-
ing and ROS production interact and regulate each other. 
All of these observations strengthen the link between the 
changed ROS levels and altered ABA response in OsAAI1 
transgenic plants (Fig.  9A–K). In many cases, abiotic 
stress gives rise to various metabolic changes, known 
as elevated ROS levels (Hasanuzzaman et  al. 2020; Qiu 
et  al. 2021). Along with increased ROS, ABA signaling 
and ABA-dependent proline accumulation, have been 
proposed to be crucial components of cross tolerance to 
various stresses (Cao et al. 2020; Chen et al. 2022a, b; Xu 
et al. 2018).

Conclusions
Bioinformatics analysis reveals that OsAAI1 belongs to 
the HPS_like subfamily of the AAI_LTSS superfamily. 
Overexpression OsAAI1 significantly increased rice roots 
and aboveground parts growth and development, thereby 
enhances the yield of rice. Overexpression OsAAI1 induc-
ing the expression of genes related to ABA biosynthesis, 
catabolism and signaling pathway and increasing the activ-
ities of many antioxidant defense enzymes of maintain the 
ROS balance to improve tolerance to drought stress in rice. 
In summary, OsAAI1 not only increases the yield of rice 
but also improve it drought stress tolerance with the ABA-
mediated regulatory and ROS scavenging pathway.

Materials and Methods
Bioinformatics Analysis of OsAAI1
The protein sequence of OsAAI1 was homologously 
sequence aligned in NCBI (www. ncbi. nlm. nih. gov), and 

http://www.ncbi.nlm.nih.gov
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phylogenetic trees between OsAAI1 and its homologous 
sequences were constructed in MEGA7.0 (adjacency 
method NJ and p-distance calculation method, bootstrap 
was set to 1000, other settings are default). Motif predic-
tion analysis was performed in online website MEME 
(https:// meme- suite. org/ meme/ doc/ meme. html) (the 
number of conservative motif retrieval was set to 10). 
Combine the motif of the phylogenetic tree and MEME 
prediction into TBtools. GeneDOC was used to compare 
OsAAI1 with Arabidopsis and rice homologous protein 
sequences.

OsAAI1 transcriptional prediction analysis: http:// glab. 
hzau. edu. cn/ RiceE NCODE/;

OsAAI1 protein prediction analysis: https:// web. 
expasy. org/ protp aram/;

OsAAI1 expression prediction analysis: http:// bar. utoro 
nto. ca/ efp2/;

OsAAI1 promoter analysis: http:// bioin forma tics. psb. 
ugent. be/ webto ols/ plant care/ html.

Plant Materials and Hormone Treatment
The Clustered regularly interspaced short palindromic 
repeats-associated protein-9 (CRISPR-Cas9) gene editing 
vector pYLCRISPR-Cas9Pubi-T1 was constructed (ggc-
caacatcctca). Mutant lines (osaai1-1, osaai1-2, osaai1-3) 
were obtained by genetic transformation on the basis of 
Oryza Sativa L. (Zhong Hua 11). Overexpression lines 
(OE2, OE3, OE6, OE9, OE18, OE19) were constructed 
into overexpression vector pEGOEP35s-A-GUS on 
the basis of Oryza Sativa L. (Zhong Hua 11). After dis-
infection, seeds germinated at 30  °C for 2–3 days for 
phenotypic analysis. When the buds grow to about 1 
mm, inoculate them in Murashige and Skoog (1/2 MS) 
medium, cultivate them in an artificial climate incuba-
tor at 30  °C, 16 hours light / 8 hours dark, observe and 
statistically analyze each lines phenotype. Drought stress 
analysis of transgenic plants based on the above meth-
ods. The early seedlings (bud length of about 1 mm) were 
placed in 10% and 20% PEG6000 solution for 14 days, and 
the phenotype data was measured. Finally, the seedlings 
which normally grew for 14 days were cultured in sandy 
soil; then, watering was stopped for 7 days to simulate 
field drought until the leaves curled, followed by recov-
ery with normal watering for another 7 days to calculate 
the survival rate. Sensitivity analysis of ABA was based of 
the above method, ABA was added to (1/2 MS) medium 
at around 40  °C to make the final concentration 3 µM. 
Then, observation and statistical analysis. Phenotype of 
germ lines after hormone treatment, hormone and abi-
otic stress treatments were performed on ZH11 seedlings 
grown for 7 days in 1/2 MS medium at 4  °C and 42  °C, 
respectively, in final concentrations of 100 µM ABA, 10 
nM IAA, 1 mM  H2O2, 20%PEG, and 100 mM mannitol, 

and sampling at 0, 4, 8, 24, and 48 h. The specific opera-
tion of the dehydration treatment was that ZH11 grown 
normally for 7 days was pulled directly from the medium, 
the roots were rinsed and dried, and left at 25 °C for 48 h. 
Samples were taken for qRT-PCR experiments at 0, 4, 8, 
24, and 48 h, respectively.

Total RNA Extraction and Quantitative PCR Analysis
Total RNA was extracted using Life (code: 15596-026) 
Trizol reagent. RNA was used to synthesize cDNA using 
a HiScript II qRT SuperMix for qPCR (+ gDNA wiper) 
reagent Kit from Vazyme (code: R223-01). qRT-PCR was 
performed on Bio-Rad CFX96 instrument with ChamQ 
Universal SYBR qPCR Master Mix reagent (Vazyme: 
Q711-02) according to manufacturer’s instructions. The 
gene β-Actin as rice housekeeping gene was used for an 
internal reference. Each analysis includes three biological 
repeats and three technical replicates. Primers used for 
qRT-PCR are listed in Additional file 1: Table S3.

Subcellular Localization
The CDS sequence of OsAAI1 was cloned into the 
pCAMBIA1301 GFP vector, and the plasmid was trans-
formed into rice protoplast isolated from rice suspen-
sion culture cells using PEG4000 mediated protoplast 
transformation (Shen et  al. 2014; Yoo et  al. 2007). The 
protoplasts were then transferred to a porous plate and 
cultured in the dark at room temperature for 16–20  h. 
Carl Zeiss axioskop 2 confocal microscope and the 
image acquisition software Zen Blue Edition (Carl Zeiss, 
Oberkochen, Germany) were used to observe the green 
fluorescence signal of transfected protoplasts. The empty 
GFP plasmid was used as a control. GFP fluorescence 
was detected at 488 nm excitation and 561 nm emission 
wavelength. Primers used for these constructs are listed 
in Additional file 1: Table S4.

Quantification of Endogenous ABA
For ABA quantification, the plants of two-weeks-old 
ZH11, OE19 and osaai1 were harvested and used for 
measurement of ABA by a liquid chromatography system 
(ACCHROM S3000) high performance liquid chromato-
graph, Alphasil VC-C18 (4.6 mm * 250 mm, 5 µm) chro-
matography measure the contents of ABA.

Analysis of Pollen Viability
To observe starch accumulation, the pollen grains from 
the transgenic as well as the wild-type plants were col-
lected and stained with 1% iodine-potassium iodide solu-
tion. Then the pollen grains were directly examined under 
a stereo microscope. The deeply stained and round pollen 
grains were counted as viable and pictures were taken.

https://meme-suite.org/meme/doc/meme.html
http://glab.hzau.edu.cn/RiceENCODE/
http://glab.hzau.edu.cn/RiceENCODE/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://bar.utoronto.ca/efp2/
http://bar.utoronto.ca/efp2/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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Water Loss Rate Determination
Water loss rates were measured using five plants each of 
wild-type and transgenic plants. Four-week-old plants 
were detached from roots and weighed immediately 
(fresh weight, FW), then the plants were left on the labo-
ratory bench (humidity, 45–50%, 20–22 °C) and weighed 
at the designated time intervals (1 h, 2 h, 4 h, 6 h, 12 h, 
24  h). The proportions of fresh weight loss were calcu-
lated relative to the initial plant weight. The plants were 
finally oven dried for 24 h at 80  °C to a constant dry 
weight (DW). Relative water contents (RWCs) and water 
loss rate were measured according to the formula: Water 
loss rate (%) = (FW– dry weight)/FW × 100), RWC (%) = 
(desiccated weight–DW)/(FW–DW) ×100.

Physiological Measurements
Leaves from plants exposed to drought stress (including 
natural drought, 10% PEG6000 and 20% PEG6000 treat-
ment) for 14 days were used to measure physiological 
index, and plants grown in normal conditions were used as 
control. Total chlorophyll content was determined by the 
protocol as described previously (Huang et al. 2009). MDA 
content was determined as previously described (Tang 
et al. 2013). Free proline content was measured using the 
reported method (He et al. 2012). Fresh leaf samples were 
used for enzyme extraction. All operations were carried out 
at 4 °C. CAT, APX, GPX, GR activity was measured accord-
ing to the method as described previously (Aebi 1984; Mur-
shed et  al. 2008). Superoxide anion radical and hydrogen 
peroxide accumulation were detected by NBT and DAB 
staining. The plants samples were excised and immedi-
ately placed in 50 mM sodium phosphate buffer (pH 7.5) 
containing 1 mg/mL NBT at 28  °C for 8 h  in the dark. 
Leaves were placed in 1 mg/mL DAB solution (pH 3.8) and 
incubated at 28  °C for 12 h in the dark. 90% ethanol and 
anhydrous ethanol was used to remove chlorophyll. The 
accumulation of hydrogen peroxide and superoxide anion 
radical was observed under a stereo microscope.

Relative Quantification of ROS
Relative quantitative analysis of ROS was analyzed 
according to the method as described previously (Juszc-
zak and Baier 2014).

Data Analysis
The relative expression of genes was analyzed using the 
 2−ΔΔCt method, and statistical analysis was performed in 
GraphPad prism 6.0 software. For phenotypic data analy-
sis, GraphPad prism 6.0 software was used for statistical 
analysis.
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