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QTL mapping reveals a tight linkage between
QTLs for grain weight and panicle spikelet
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Abstract

Background: A number of QTL studies reported that one genomic region was associated with several traits,
indicating linkage and/or pleiotropic effects. The question of pleiotropy versus tight linkage in these studies should
be solved using a large-size population combined with high-density mapping. For example, if each of the 2 parents
has a TGW-increasing or SPP-increasing QTL that is tightly linked, complementary combination of the 2 beneficial
QTLs by using molecular markers could produce higher yields compared to the 2 parents. However, a pleiotropic
QTL with opposite effects on the SPP and 1,000-grain weight (TGW) is complicated and challenging in terms of its
application to rice improvement.

Results: In this study, using a series of BC5F4 nearly isogenic lines (NILs) that were derived from a cross between
the Korean japonica cultivar Hwayeongbyeo and Oryza rufipogon, we demonstrated that 2 QTLs, qSPP5 for spikelets
per panicle (SPP) and qTGW5 for grain weight (TGW), are tightly linked on chromosome 5. Alleles from the
O. rufipogon parent increased the SPP and decreased TGW in the Hwayeongbyeo background. qSPP5 was located
within a 803-kb interval between the simple sequence repeat (SSR) markers INDEL3 and RM18076. Based on the
map position, qTGW5 seemed to be the same gene as qSW5, which controls grain morphology. The additive effect
of the O. rufipogon allele at qSPP5 was 10–15 SPP, and 33.0% of the phenotypic variance could be explained by
the segregation of the SSR marker RM18058. Yield trials with BC5F4 NILs showed that lines that contained a
homozygous O. rufipogon introgression at the qSPP5 region out-yielded sibling NILs that contained Hwayeongbyeo
DNA by 15.3% and out-yielded the Hwayeongbyeo parent by 7.3%.

Conclusion: Based on the finding that the O. rufipogon allele for the SPP was beneficial in the japonica and indica
cultivar backgrounds, the qSPP5 allele could be valuable for improving rice yields. In addition, the NIL populations
and molecular markers are useful for cloning qSPP5.
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Background
Asian cultivated rice (Oryza sativa L.) originated from
common wild rice (Oryza rufipogon Griff.), and their
morphological, biochemical and genetic relationships
have been analyzed in many studies (Sun et al., 2001; Cai
& Morishima 2002). Much of its genetic architecture and
phenotypic construction changed during domestication
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from wild rice. In general, Oryza sativa is different from
O. rufipogon in terms of a number of traits such as plant
height, number of spikelets per panicle (SPP), 1000-grain
weight, grain shape, and awn. Among these agronomic
traits, the SPP and 1000-grain weight are determinants of
grain yield (YD).
The number of primary and secondary branches

(SBs) strongly influences the average number of SPP
(Yamagishi et al., 2002). QTLs for the SPP have been
detected using various segregating populations (Kobayashi
et al., 2004). Several QTLs for the SPP have also been
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Figure 1 Development of genetic materials that were used in
this study.
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identified in wild relatives (Thomson et al., 2003; Suh
et al., 2005; Onishi et al., 2007). These QTLs are located
across the chromosomes and provide valuable information
on the genes that control the SPP in different populations.
In addition, SPP QTLs have been mapped as a single
Mendelian factor (Zhang et al., 2006, 2009) and were
rarely found on chromosomes 5 and 10 (Thomson et al.,
2003; Tan et al., 2008). And these studies showed that
the wild rice allele leads to increased or decreased
number of SPP.
Increase of the grain weight is a method for increasing

rice yield. Genes that affect the grain size have been
identified in inter-specific crosses (Xiao et al., 1998;
Thomson et al., 2003; Li et al., 2004; Aluko et al., 2004;
Brondani et al., 2002). In most cases, wild-type alleles
were associated with small grain, whereas cultivar alleles
were associated with large grains. Usually, grain size is
determined by grain length (GL), width, and thickness.
These 3 traits are quantitatively inherited under the con-
trol of several or many genes. To date, 5 key genes con-
trolling seed size have been isolated in rice: GS3, GW2,
qSW5 or GW5, GIF1 and GS5. (Fan et al., 2006; Song
et al., 2007; Shomura et al., 2008; Weng et al., 2008; Li
et al., 2011). GS3 has a major effect on seed length,
whereas qSW5/GW5 and GW2 confer both the seed or
grain width (GW) and weight in rice. GIF1 encodes a
cell-wall invertase that is required for carbon partition-
ing during early grain filling, and the over-expression of
GIF1 by using its native promoter leads to large grains
(Wang et al., 2008). Shomura et al. (2008) found that a
deletion in qSW5 was associated with grain size owing
to an increase in the cell number in the outer glume of
the rice spikelet.
A number of QTL studies showed that one genomic

region was associated with several traits, especially yield
component traits, indicating linkage and/or pleiotropic
effects (Xiao et al., 1996; Tian et al., 2006; Tan et al.,
2008; Liu et al., 2010). The question of pleiotropy versus
tight linkage in these studies should be solved using a
large-size population combined with high-density map-
ping, because its implication is important for improving
rice quality and yield. For example, if each of the 2 par-
ents has a TGW-increasing or SPP-increasing QTL that
is tightly linked, complementary combination of the 2
beneficial QTLs by using molecular markers could pro-
duce higher yields compared to the 2 parents. However,
a pleiotropic QTL with opposite effects on the SPP and
1,000-grain weight (TGW) is complicated and challen-
ging in terms of its application to rice improvement.
We conducted this study to characterize the QTL,

qSPP5 in terms of the SPP and to determine its linkage
relationship with the grain weight gene, qTGW5 by using
near-isogenic lines that were derived from a cross between
Hwayeongbyeo (O. sativa) and W1944 (O. rufipogon).
Methods
Population development
In previous studies, the QTLs for the SPP and GW were
detected near the SSR markers RM413 and RM194 on
chromosome 5 (Lee et al., 2005; Yuan et al., 2009). The
scheme that we used to develop the genetic material is
shown in Figure 1. To analyze these QTLs, we selected
the BC3F4 introgression line CR6 as the basis for fine-
mapping for the following reasons: (a) it had an O. rufipo-
gon introgression across the target region as identified by
markers RM413 and RM194 on chromosome 5; (b) it was
associated with increased SPP and decreased grain weight;
and (c) it had only 4 non-target O. rufipogon segments
(Figure 2). CR6 was backcrossed to Hwayeongbyeo and
then allowed to self to generate a near isogenic line (NIL)-
derived BC4F2 population (457 plants), which showed seg-
regation in the target region on chromosome 5. A single
BC4F2 plant was selected from this population using the
same criteria as mentioned above, and the plant was het-
erozygous across the target region with respect to markers
RM413 and RM194 on chromosome 5. The plant was
selfed to produce 434 BC4F3 plants. The QTLs for the
SPP and TGW were validated in both of the popula-
tions. To further fine map qTGW5, one BC4F3 plant,
CR7111-30, which carried the W1944 homozygous seg-
ment for the target region at qTGW5 locus, was crossed
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Figure 2 Graphical genotype of the BC3F4 line, CR6. CR6 had, in total, 5 introgressed segments including the target segment on
chromosome 5. HH: Hwayeongbyeo homozygote; WW: W1944 homozygote.
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with Hwayeongbyeo to produce a BC5F2 population with
326 plants. CR7111-30 had no O. rufipogon introgression
at the non-target regions. Among 326 plants, 127 BC5F2
plants were evaluated and used for QTL analysis. 26
BC5F2 plants with informative recombination breakpoints
between RM18003 and RM249 were selfed to produce 26
BC5F3 lines for substitution mapping. Finally, 18 BC5F3
lines were selected and selfed to produce BC5F4 lines.

Phenotypic evaluation
Two populations (BC4F3 and BC5F2), 26 BC5F3 lines, 18
BC5F4 lines, and the parent Hwayeongbyeo, were grown
in the field during the summers of 2008–2011 at the
Chungnam National University (36°22′ N, 127°22′ E),
Daejeon, Korea. Each plant in BC4F3 and BC5F2 was plan-
ted 15 cm from the next plant and was spaced at 30 cm be-
tween rows. Each line with 25 plants in BC5F3 and BC5F4
was represented by a single row of 30-day-old seedlings
that were planted 15 cm from the next plant and spaced at
30 cm between rows. The BC5F4 lines were planted in a
completely randomized block design with 3 replications.

Agronomic traits
The culm length (CL), panicle length, primary branch
(PB), secondary branch (SB), SPP, TGW, grain length
(GL), grain width (GW), grain thickness (GT), and yield
per plant (YD) were evaluated for each plant and line as
follows. Five plants from the middle of each line were
selected to evaluate the CL and panicle length, and the 2
biggest panicles of 5 plants were selected to evaluate the
PB, SB, and SPP. Grains that had hulls were allowed to
dry naturally after harvesting, and partial or un-filled
seeds were removed by soaking the grains in water. Fully
filled seeds were re-dried in an oven at 30°C for 24 h.
The TGW was evaluated by measuring the weight of
100 randomly selected, fully filled grains: this method
was performed in triplicate and the values were averaged
to yield a single mean. The GL, GW, and GT of 100
grains that were fully filled were measured in triplicate
using a 150-mm vernier caliper (Mitutoyo Corp., Japan).
The YD, which was measured in grams of seed per plant,
was determined for 15 plants that were harvested from
the middle of 1 plot per block. The TGW and yield per
plant were corrected for 12% grain moisture content.

DNA extraction and simple sequence repeat analysis
DNA was extracted from the fresh leaves of BC4F3
plants, BC5F2 plants, and BC5F4 lines by using the CTAB
method described by Causse et al. (1994). SSR primers
were synthesized according to an available public rice



Table 1 Comparison of 6 agronomic traits between
Hwayeongbyeo and CR6

Trait# Hwayeongbyeo CR6 Difference@

SPP 118.2 ± 12.3 142.4 ± 15.1 **

TGW 25.5 ± 1.8 23.1 ± 1.3 **

GW 1.58 ± 0.19 1.45 ± 0.18 **

SB 20.4 ± 5.2 27.2 ± 5.9 **

PL 20.3 ± 2.6 22.1 ± 2.9 *

CL 83 ± 5.2 87 ± 4.2 **
#SPP, TGW, GW, SB, PL, and CL: spikelets per panicle, 1,000-grain weight, grain
width, secondary branches per panicle, panicle length, and culm
length, respectively.
@ *, **: Significant at P = 0.05 and 0.01, respectively.
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genomic sequence (http://www.gramene.org/markers/).
One primer, INDEL3, in the target region, was designed
using primer 3.0 (forward: 5′CATCACTTTCTCTCCTT
CCGTTA3′, reverse: 5′TACAGTGTACAGAAAGCTG
GTTG3′). A total volume of 20 μL of reaction mixture
was composed of 5.0 μL (5 ng/μL) of template DNA,
0.1 μL of Taq polymerase (5 Unit/μL), 0.8 μL of dNTP
(2.5 mM each), 1 μL of forward + reverse primer (10 pmol
each), 2.0 μL of 10× PCR buffer (10 mM Tris–HCl PH
8.3, 50 mM KCl, 1.5 mM MgCl2, and 0.1% Gelatin),
and 11.1 μL of triply distilled water. Amplification was
achieved using a Thermo Cycler (Bio-Rad) according to
the step-cycle program of denaturation at 94°C for 5 min
and then subsequent denaturation performed at 94°C for
1 min, annealing at 55°C for 1 min, and extension at 72°C
for 1 min. Steps 2 through 4 were repeated for 35 cycles,
in all, followed by a final extension step at 72°C for 5 min.
The PCR products were run on a 4% polyacrylamide de-
naturing gel for 1–2 h at 1800–2000 V, and marker bands
were revealed by silver staining (Panaud et al., 1996). 11
SSR markers failed to detect polymorphism in the region
between INDEL3 and RM18058 due to genetic similarity
between the parents (Lee et al., 2005), and additional
genotyping of BC5F4 lines was conducted with targeted
SNP markers. The polymorphism was assayed by direct
sequencing of 441-bp (5,697,197 - 5,697,637th position)
and 1,162-bp (5,892,883 -5,894,044th position) PCR pro-
duct generated by two primer pairs in Solgent Co., Korea
(www.solgent.com). The first (F 5′-gattgacttatatttg-
gacctcc-3′ and R 5′- gtaaacggtagtgttgactgca-3′) and
second (F 5′- caaaatgaatcggccgaagcac -3′ and R 5′- cagac-
cagtgtgaagaggagg -3′) primers were designed according to
the sequences of the O. rufipogon and Nipponbare (http://
rgp.dna.affrc.go.jp/E/IRGSP/Build5/build5.html). The se-
quence information of O. rufipogon in the target region
was provided by Dr. S.R. McCouch at Cornell University.
The first SNP, hereafter referred to as SNP-1 which occurs
at the 5,697,388th position based on the Nipponbare se-
quence (http://rgp.dna.affrc.go.jp/E/IRGSP/Build5/build5.
html) is characterized by nucleotide T in Hwayeongbyeo
but nucleotide C in O. rufipogon. The second SNP, SNP-2
which occurs at the 5,893,072th position based on the
Nipponbare sequence (www.gramene.org) is characterized
by nucleotide thymine (T) in Hwayeongbyeo but nucleo-
tide cytosine (C) in O. rufipogon.

Statistical analysis
One-way ANOVA was performed to determine the ef-
fect of each marker on each of the traits. Phenotypic
means of 3 genotypes- Hwayeongbyeo and W1944 ho-
mozygotes and heterozygotes- were compared using Stu-
dent’s t-test, and a probability level of 0.5% was used as
the threshold for detecting a QTL. The proportion of
total phenotypic variance that was explained by each
QTL was calculated as an R2 value by carrying out re-
gression analysis using each marker/phenotype com-
bination. QTLs were fine-mapped by comparing the
phenotypic means of 3 genotypes of recombinants within
the target region by using the SAS statistical software
package (SAS Institute, Cary, NC, USA).

Results
Characteristics of CR6
Two parents, CR6 and Hwayeongbyeo, showed signifi-
cant differences in 6 traits (Table 1). Hwayeongbyeo ex-
hibited less number of SPP but higher TGW than CR6
did. The GW of Hwayeongbyeo was larger than that of
CR6, whereas no significant differences in the GT and
GL were detected between the 2 parents (data not
shown). Moreover, no significant difference was ob-
served for days to heading and spikelet fertility (data
not shown).

Frequency distribution of the BC5F2 population
Frequency distributions of phenotypes for the TGW,
SPP, SB, and CL of the BC5F2 population are shown in
Figure 3. The TGW showed a bimodal distribution with
23.5 as the trait value boundary. The other 3 traits ex-
hibited continuous and normal distributions. The dis-
tribution indicated that the O. rufipogon segment was
associated with increases in the SB and SPP, and de-
creases in the TGW in the Hwayeongbyeo background.
The genotypes of the BC5F2 plants were determined at
RM194 and the phenotypic variances that were ex-
plained by the marker were 37.0%, 13.9%, 9%, and 20.0%,
respectively.

QTLs in BC4F3, BC5F2, BC5F3, and BC5F4
The possibility of the effect of non-target regions on SPP
and other traits can be excluded because CR7111-30 had
no O. rufipogon introgression at the non-target regions.
Two SSR markers, RM413 and RM194, were used to
genotype the BC4F3 and BC5F2 generations. The QTLs
for the TGW, SPP, CL, PL, SB, and GW were all linked
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Figure 3 Frequency distribution of 4 traits in the BC5F2 population. Three genotypes of the Hwayeongbyeo homozygous and heterozygous
and O. rufipogon homozygous classes were identified using the simple sequence repeat marker RM194. HH: Hwayeongbyeo homozygote;
WW: W1944 homozygote; and HW: heterozygote. P1 and P2 denote Hwayeongbyeo and CR7111-30, respectively.
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to RM194 (Table 2). Seven markers were used to ge-
notype the BC5F3 and BC5F4 populations. The orienta-
tions and distances between the markers were based on
Nipponbare sequence information (http://www.gramene.
org/markers/microsat/). QTL analysis for 5 traits re-
vealed that there was a significant peak near the marker
RM194 for the TGW, CL, SPP, SB, and GW, and a peak
near RM18076 (Table 2). The phenotypic variance that
was explained by each QTL was 9.4-79.0%. This result
indicates that this region was a QTL cluster. The SPP
for the Hwayeongbyeo homozygous class (HH), the
heterozygous class (HW), and the O. rufipogon class
(WW) were 119, 147, and 141 at RM18076 in BC5F4,
respectively. TGW for the Hwayeongbyeo HH, HW,
and the O. rufipogon class WW were 27.1, 25.4, and
24.2 respectively.
A strong positive correlation (r = 0.845, P < 0.001)

was observed between the GW and TGW in BC5F4,
indicating that the variation in the GW was asso-
ciated with that in the TGW at this locus (data not
shown).
Substitution mapping
Substitution mapping was carried out for qTGW5 and
qSPP5 by using the BC5F3 and BC5F4 populations
(Figure 4). Seven markers were used to screen 26 BC4F3
lines, and these lines were evaluated for the TGW and
SPP. The 26 lines were classified into 8 groups based on
the genotypes of the SSR markers. The mean phenotypic
values of the TGW and SPP for each group were com-
pared to those of the controls, Hwayeongbyeo and
CR7111-30. A comparison of the genotypes of recombi-
nants delimited the qTGW5 locus between markers
INDEL3 and RM18003 based on the finding that the
TGW of the B5 lines with a recombination breakpoint
between RM18003 and RM3419 did not significantly dif-
fer from that of Hwayeongbyeo but was higher than that
of CR7111-30. Moreover, the TGW of B8 lines with a re-
combination breakpoint between INDEL3 and RM194
did not significantly differ from that of CR7111-30 but
was lower than that of Hwayeongbyeo.
For the qSPP5 locus, group B5 had a significantly

lower SPP than CR7111-30 did. The SPP of group B2

http://www.gramene.org/markers/microsat/
http://www.gramene.org/markers/microsat/


Table 2 QTLs detected in the BC4F3, BC5F2, BC5F3, and BC5F4 generations

Trait$ QTL Marker Pop. P R2
Phenotypic mean ± s.d.%

HH HW WW

TGW qTGW5

RM194 BC4F3 0.0001 45.9 26 ± 1.3(108)# 24 ± 1.7(210) 23 ± 1.2(113)

RM194 BC5F2 0.0001 37.1 26 ± 0.8(28) 24 ± 1.1(55) 23 ± 0.8(44)

RM194 BC5F3 0.0001 64.8 25 ± 0.4(5) 24 ± 0.6(11) 23 ± 0.4(10)

RM194 BC5F4 0.0001 79.0 25 ± 0.7(6) 24 ± 0.9(6) 23 ± 0.6(6)

SPP qSPP5

RM194 BC4F3 0.01 9.7 123 ± 22 145 ± 25 144 ± 21

RM194 BC5F2 0.01 13.0 126 ± 17 140 ± 17 140 ± 16

RM194 BC5F3 0.01 19.5 133 ± 11 148 ± 12 146 ± 12

RM18058 BC5F4 0.005 33.0 125 ± 10 148 ± 12 150 ± 12

SB qSB5

RM194 BC4F3 0.01 9.0 24 ± 0.8 25 ± 1.2 26 ± 1.1

RM194 BC5F2 0.005 9.0 23 ± 0.8 26 ± 1.0 26 ± 0.9

RM194 BC5F3 0.005 20.9 23 ± 0.7 24 ± 1.0 25 ± 0.8

RM194 BC5F4 0.0001 35.7 23 ± 0.8 26 ± 1.0 27 ± 0.9

CL qCL5

RM194 BC4F3 0.01 9.4 77 ± 3.1 78 ± 3.2 79 ± 2.8

RM194 BC5F2 0.005 20.0 75 ± 2.6 78 ± 3.0 78 ± 2.9

RM194 BC5F4 0.005 21.5 79 ± 1.9 83 ± 2.0 83 ± 1.9

GW qGW5 RM194 BC5F4 0.0001 62.0 1.58 ± 0.10 1.49 ± 0.10 1.45 ± 0.11
$TGW: 1,000-grain weight; SPP: number of spikelets; SB: number of secondary branches; CL: culm length; and GW: grain width. %HH: Hwayeongbyeo homozygotes;
HW: heterozygotes; and WW: O. rufipogon homozygotes. #Numbers in parenthesis indicate the number of plants or lines.
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with a breakpoint between markers RM18058 and
INDEL3 did not significantly differ from that of
CR7111-30 but was significantly higher than that of
Hwayeongbyeo. These results imply that qSPP5 was
located downstream of INDEL3. The parents and the
heterozygote class (B1 and B3) showed significant dif-
ferences in the TGW, indicating that the TGW gene
was under additive genetic control. The heterozygote
classes (B6 and B7) and CR7111-30 showed significantly
higher SPP than Hwayeongbyeo did, indicating that the
SPP gene was under dominant genetic control.
To further define the linkage relationship between

qSPP5 and qTGW5, we self-crossed 18 BC5F3 plants that
were selected from B1, B2, B6, and B8 to produce 18
BC5F4 lines and evaluated them in terms of the TGW,
SPP and CL (Figure 4B). Also, BC5F4 lines were geno-
typed with two SNP markers, SNP-1 and SNP-2. The
mean phenotypic values of the SPP and TGW for each
group in BC5F4 were compared to those of the controls,
Hwayeongbyeo and CR7111-30. The TGW of B2-1 was
significantly higher than that of B1-1 and B6-1, which
suggests that the qTGW5 allele was located in the up-
stream region of SNP-1. The TGW of B8-1 was signifi-
cantly lower than that of Hwayeongbyeo, which suggests
that the qTGW5 allele was located in the upstream re-
gion of INDEL3. For qSPP5, B2-1 significantly differed
from Hwayeongbyeo in SPP, which indicated that the
qSPP5 allele was located in the downstream region of
INDEL3. The number of SPP of B6-1 was significantly
higher than that of Hwayeongbyeo, which suggests that
qSPP5 was located in the upstream region of RM18076.
The group B8-1 did not show difference in the number
of SPP compared to Hwayeongbyeo, and this indicated
that the QTLs for the SPP and TGW were different. We
found that qTGW5 was located in the upstream region
of INDEL3, whereas qSPP5 was located in about 860-kb
interval between INDEL3 and RM18076 based on the
Nipponbare sequence (www.gramene.org). To map the
qCL5, the same procedure was applied and qCL5 was lo-
cated in the upstream of INDEL3.

O. rufipogon contains Kasalath-type qSW5
The qTGW5 seemed to be the same gene as qSW5 based
on its position (Shomura et al., 2008). Three allelic types
at the qSW5 locus exist: Kasalath-type, Indica II-type,
and Nipponbare-type. Of these, the Kasalath-type allele
is functional and the Nipponbare-type is a loss-of-
function allele. A 1212-bp deletion at the qSW5 locus
in Nipponbare was associated with an increase in the
GW, as compared to Kasalath. One hundred eighty
rice cultivars were genotyped at the qSW5 locus by
using the primers, and they were divided into 3 types:
Kasalath-type, Indica II-type, and Nipponbare-type
(Song et al., 2011). To determine the allele type of O.
rufipogon at qGW5, we genotyped O. rufipogon by using
the N1212del. The results showed that Hwayeongbyeo
and W1944 had the Nipponbare-type and Kasalath-type
alleles, respectively (data not shown). This result seemed

http://www.gramene.org
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Figure 4 Substitution mapping of qSPP5 and qTGW5 using two populations. A) Graphical genotypes of the BC5F3 lines that were used for
the substitution mapping of qSPP5 and qTGW5. The white portions of the graph indicate homozygous Hwayeongbyeo chromosome segments,
the black regions indicate homozygous O. rufipogon chromosomes, the gray areas indicate heterozygous regions, and the slashed areas are
regions where crossing-over occurred. The table on the right of the graphical genotypes shows the mean values of 2 traits for each genotype.
The broken vertical lines define the interval that contained 2 QTLs. &Number of lines in each group. #The numbers that are followed by different
letters in each column were significantly different according to Tukey’s HSD test at 5%. B) Graphical genotypes of the BC5F4 lines that were used
for the substitution mapping of qSPP5, qTGW5 and qCL5. HH and WW in the Group indicate Hwayeongbyeo and CR7111-30, respectively.
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to confirm that qTGW5 in this study was the same gene
as qSW5.

Impact of the QTL cluster on the YD per plant
Two BC5F4 NILs, B8-1 (O. rufipogon homozygous at
qTGW5 and Hwayeongbyeo homozygous at qSPP5) and
B2-1 (Hwayeongbyeo homozygous at qTGW5 and O.
rufipogon homozygous at qSPP5), were used for yield tri-
als together with the parental controls in 2011. The trials
were conducted using a completely randomized block
design with 3 repetitions. The results show that the aver-
age YD per plant of B2-1 was 15.3% higher than that of
B8-1 (P ≤ 0.02). The average YD per plant of B2-1 was
7.3% higher than that of Hwayeongbyeo (P = 0.06),
although the difference was not significant at P = 0.05
(Table 3).

Discussion
The original target of this study was the QTL for the
TGW, which was qTGW5 mapped on chromosome 5
(Lee et al., 2005). During the process of fine-mapping
this trait, the QTLs for the SPP, SB, and CL were con-
sistently detected in the same region. The QTL for the
SPP was detected near the SSR markers RM413 and
RM194 on chromosome 5, and the coefficient of deter-
mination was low being 3.7% (Lee et al., 2005). However,
the effect of qSPP5 was not strong to be detected by
both interval mapping and single-point analysis near the



Table 3 Comparison of grain yield per plant between 2
QTL-NILs and their parents

Line Trait mean ± s.d.@

DTH CL YD

Hwayeongbyeo 98a+, a# 83b, b 26.0 ± 1.3 ab, b

CR7111-30 98a, a 86a, a 25.7 ± 1.4 bc, b

B2-1 98a, a 82b, b 27.9 ± 1.6 a, a

B8-1 97a, a 86a, a 24.0 ± 1.5 d, c
@DTH: days to heading; CL: culm length; and YD: yield per plant.
+, #The numbers that are followed by the same letters were not significantly
different according to Tukey’s HSD test at 5% (+) and 10% (#), respectively.
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same SSR markers (Yuan et al., 2009). It is likely that
qSPP5 is a minor QTL and not stable. Substitution lines
confirmed that the QTL for TGW resided in the 165-kb
region and that the additional 4 QTLs were co-localized
near qTGW5.
A number of QTLs for the SPP have been identified

using inter- (Thomson et al., 2003; Tian et al., 2006) and
intra-specific populations (Cui et al., 2003; Lu et al.,
1997), and these QTLs were located on all of the rice
chromosomes. However, a few studies reported on a
QTL that is associated with the SPP and is located on
chromosome 5 by using inter-specific populations (Lee
et al., 2005; Tian et al., 2006; Tan et al., 2008). Based on
the finding that the wild alleles increased the number of
SPP and decreased the TGW, and their map position, it
appears that qGPA5 reported by Tian et al. (2006) and
spp5.1 detected by Tan et al. (2008) are allelic to qSPP5
in this study. It is interesting that the QTL for the SPP
was detected exclusively using introgression lines from
crosses between cultivars and Asian common wild rice
(Lee et al., 2005; Tian et al., 2006; Tan et al., 2008). One
possible reason is that the effect of these QTLs was not
so strong that they could not be detected in primary
mapping populations such as F2 and RILs (Xiao et al.,
1996) because qGPA5 (Tian et al., 2006), spp5.1 (Tan
et al., 2008), and qSPP5 in this study were detected in
the introgression lines population. Because the SPP is
inherited quantitatively, this trait is tractable to genetic
analysis via the development of high-resolution NILs.
NILs that block genetic background noise would be use-
ful for validating minor QTLs and mapping them as a
single Mendelian factor (Xie et al., 2008). As docu-
mented in this study, the R2 values steadily increased
with progressive generations of backcrossing from 9.7%
for the BC4F3 generation to 33.0% for the BC5F4 gene-
ration of NILs. As the number of spurious donor (i.e., O.
rufipogon) introgressions in the genetic background de-
creased and the linkages between the markers and the
target gene(s) increased, the proportion of phenotypic
variation that could be explained by the markers greatly
enhanced.
Whether similar genomic locations of QTLs that affect
different traits are attributable to the pleiotropy of a
single gene or the tight linkage of several genes that in-
dividually influence specific traits has been a topic of de-
bate. In a previous study by Xiao et al. (1996), pleiotropy
was suggested for 3 chromosomal regions that were sim-
ultaneously associated with the TGW and grains per
plant or the TGW and grains per panicle. These yield
components showed highly negative correlations, and 3
significant QTLs that were associated with the TGW
were mapped to the same positions as 3 QTLs that
affect grains per plant and grains per panicle. In this
study, one genomic region was associated with more
than one trait, which indicated the existence linkage
and/or pleiotropic effects. Liu et al. (2010) mapped the
QTLs for grain weight TGW3b and the SPP SPP3b to a
2.6-cM interval between RM15885 and W3D16. At
this QTL region, the Teqing allele was associated with
an increase in the SPP and a decrease in the TGW,
and no conclusion could be drawn about whether one
pleiotropic QTL or two linked QTLs were located within
the interval. Bai et al. (2011) also reported that 2 QTLs,
qssp8 and tgw8, which are located between RM502 and
RM264, might be the same gene. In our study, we demon-
strated that 2 tightly linked QTLs, qSPP5 and qTGW5,
control the SPP and grain weight, respectively. In this re-
gard, the question of pleiotropy versus tight linkage in
these studies remains to be resolved using larger popula-
tions and high-density mapping.
A high YD is one of the most important goals of rice

breeding programs. Much attention has been focused on
the genetic bases of the SPP and TGW because of their
importance in determining rice yield. In this study, the
effect of the detected QTL qSPP5 was confirmed by the
increase in the SPP of the NILs. qSPP5 is a minor QTL
that exhibits a small additive effect of approximately
10–15 spikelets. The high number of SPP in the NIL
was mainly attributed to the increased number of SBs.
The finding that yield per Hwayeongbyeo plant could be
improved by introgressing qSPP5, which is a QTL for
the SPP from O. rufipogon, demonstrates the existence
of a complementary combination between 2 linked QTLs,
qTGW5 and qSPP5, with the aid of molecular markers.
Specifically, the pyramiding of the Hwayeongbyeo allele at
qTGW5 and the O. rufipogon allele at qSPP5 should pro-
duce a higher yield compared to the parental genotypes.
As expected, the NIL with the wild allele at qTGW5 and
the Hwayeongbyeo allele at qSPP5 had lower yields com-
pared to Hwayeongbyeo. The data presented in this study
clearly indicate the linkage of qSPP5 and qTGW5 although
additional experiments using lines from a cross between
two separate lines each segregating at one QTL region
but fixed at another QTL might be necessary to fur-
ther confirm their linkage. Based on the finding that
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the O. rufipogon alleles for the SPP are beneficial in the
japonica and indica cultivar backgrounds (Lee et al.,
2005; Tian et al., 2006; Tan et al., 2008), the qSPP5 allele
could be valuable gene (s) for improving rice yields.
QTL mapping indicated the existence of five QTLs in

this region across different generations and substitution
mapping confirmed the linkage of QTLs for SPP and
TGW. The finding that the gene (s) affecting two traits,
SPP and SP were mapped to the same region and the
same direction of the genetic effect with O. rufipogon al-
leles increasing trait values across different generations
implies that this locus was associated with panicle
structure with pleiotropic effects. Similar results were
reported in the study by Ohsumi et al. (2011) that
Habataki alleles of qSBN1 and qPBN6 increased spikelet
number on secondary rachis branches and primary rachis
branches in the Sasanishiki genetic background. A strong
positive correlation (r = 0.845, P < 0.001) between the
GW and TGW in BC5F4 seems to suggest that the vari-
ation in the GW was associated with that in the TGW at
this locus which controls grain morphology traits (data
not shown). This result is also consistent with the report
by Weng et al. (2008) that GW5 is associated with rice
grain width and weight.
Several QTLs that control the SPP have been cloned

using NILs (Xue et al. 2008; Miura et al. 2010). In the
present study, qSPP5 was responsible for 33.0% of the
phenotypic variance. No QTL around the qSPP5 region
has been cloned to date. It would be interesting to clone
qSPP5 to examine the functional relationships of the
genes that control the SPP and to determine how they
interact with other genes/alleles in various genetic back-
grounds. The BC5F4 NILs that were developed in this
study could be good materials for further fine mapping
and cloning of qSPP5.
Conclusion
In this study, we demonstrated that 2 QTLs, qSPP5 for
spikelets per panicle (SPP) and qTGW5 for grain weight
(TGW), are tightly linked on chromosome 5. Based on
the finding that the O. rufipogon allele for the SPP was
beneficial in the japonica and indica cultivar back-
grounds, the qSPP5 allele could be valuable for impro-
ving rice yields. In addition, the NIL populations and
molecular markers are useful for cloning qSPP5.
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