Skip to main content

Table 2 Summary of linear mixed models and linear regression models frequently used for the estimation of realized rate of genetic gain in plant breeding programs

From: Realized Genetic Gain in Rice: Achievements from Breeding Programs

Method

Model

Effects

References

Era trial

\({y}_{i}=\mu +\beta {r}_{i}+{\varepsilon }_{i}\)

Phenotypic value (y)

Regression coefficient (β)

Year of release (r)

Duvick (2005), Hallauer et al. (2010), Rutkoski (2019b)

EBVb

\({y}_{ijk}=\mu +{g}_{i}+{d}_{i}+{l}_{k}+{\varepsilon }_{ijk}\)

\({g}_{i}=\mu +{\beta r}_{i}+{\varepsilon }_{i}\)

Phenotypic value (y)

Genotype effect (g)a

Location (L)

Year (d)

Regression coefficient (β)

Breeding cycle (r)

Garrick (2010), Rutkoski (2019b)

Variety registration trial

\({y}_{ijk}=\mu +{g}_{i}+{\beta r}_{i}+{d}_{j}+{\gamma t}_{i}+{l}_{k}+{h}_{jk}+{x}_{ij}+{z}_{ik}+{\varepsilon }_{ijk}\)

Phenotypic value (y)

Genotype (g)a

Location (l)a

Year (d)a

Regression coefficients for genetic and non-genetic trends (\(\beta et \gamma\))

G x Location (z)a

G x Year (x)a

Location x Year (h)a

Laidig et al. (2014), Piepho et al. (2014), Rutkoski (2019b)

  1. aRandom variables that are independent and identically distributed (iid), assumed to be normal
  2. bEstimated breeding value. In the EBV method, the first model is used to estimate breeding value and the second model is used to estimate genetic gain (simple linear regression coefficient)